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Optimal Feedback Communication
Via Posterior Matching
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Abstract—In this paper, we introduce a fundamental principle
for optimal communication over general memoryless channels
in the presence of noiseless feedback, termed posterior matching.
Using this principle, we devise a (simple, sequential) generic
feedback transmission scheme suitable for a large class of mem-
oryless channels and input distributions, achieving any rate
below the corresponding mutual information. This provides a
unified framework for optimal feedback communication in which
the Horstein scheme (BSC) and the Schalkwijk-Kailath scheme
(AWGN channel) are special cases. Thus, as a corollary, we prove
that the Horstein scheme indeed attains the BSC capacity, set-
tling a longstanding conjecture. We further provide closed form
expressions for the error probability of the scheme over a range
of rates, and derive the achievable rates in a mismatch setting
where the scheme is designed according to the wrong channel
model. Several illustrative examples of the posterior matching
scheme for specific channels are given, and the corresponding
error probability expressions are evaluated. The proof techniques
employed utilize novel relations between information rates and
contraction properties of iterated function systems.

Index Terms—Channel capacity, feedback communication,
Horstein scheme, iterated function system, Schalkwijk-Kailath
scheme.

I. INTRODUCTION

F EEDBACK cannot increase the capacity of memoryless
channels [1], [2], but can significantly improve error

probability performance, and perhaps more importantly—can
drastically simplify capacity achieving transmission schemes.
Whereas complex coding techniques strive to approach capacity
in the absence of feedback, that same goal can sometimes be
attained using noiseless feedback via simple deterministic
schemes that work “on the fly”. Probably the first elegant feed-
back scheme in that spirit is due to Horstein [3] for the Binary
Symmetric Channel (BSC). In that work, information is repre-
sented by a uniformly distributed message point over the unit
interval, its binary expansion representing an infinite random
binary sequence. The message point is then conveyed to the re-
ceiver in an increasing resolution by always indicating whether
it lies to the left or to the right of its posterior distribution’s
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median, which is also available to the transmitter via feedback.
Loosely speaking, using this strategy the transmitter always
answers the most informative binary question that can be posed
by the receiver based on the information the latter has. Bits from
the binary representation of the message point are decoded by
the receiver whenever their respective intervals accumulate a
sufficient posterior probability mass. The Horstein scheme was
conjectured to achieve the capacity of the BSC, but this claim
was verified only for a discrete set of crossover probability
values for which the medians exhibit regular behavior [4], [5],
and otherwise not rigorously established hitherto1.

A few years later, two landmark papers by Schalk-
wijk-Kailath [7] and Schalkwijk [8] presented an elegant
capacity achieving feedback scheme for the additive white
Gaussian noise (AWGN) channel with an average power
constraint. The Schalkwijk-Kailath scheme is “parameter es-
timation” in spirit, and its simplest realization is described as
follows: Fixing a rate and a block length , the unit interval
is partitioned into equal length subintervals, and a (deter-
ministic) message point is selected as one of the subintervals’
midpoints. The transmitter first sends the message point itself,
which is corrupted by the additive Gaussian noise in the channel
and so received with some bias. The goal of the transmitter is
now to refine the receiver’s knowledge of that bias, thereby
zooming-in on the message point. This is achieved by com-
puting the minimum mean square error (MMSE) estimate of the
bias given the output sequence observed thus far, and sending
the error term amplified to match the permissible input power
constraint, on each channel use. At the end of transmission the
receiver uses a nearest neighbor decoding rule to recover the
message point. This linear scheme is strikingly simple and yet
achieves capacity; in fact at any rate below capacity it has an
error probability decaying double-exponentially with the block
length, as opposed to the single exponential attained by non-
feedback schemes. A clean analysis of the Schalkwijk-Kailath
scheme can be found in [9] and a discussion of a sequential
delay-universal variant is given in [10].

Since the emergence of the Horstein and the Schalk-
wijk-Kailath schemes, it was evident that these are similar in
some fundamental sense. Both schemes use the message point
representation, and both attempt to “steer” the receiver in the
right direction by transmitting what is still missing in order
to “get it right”. However, neither the precise correspondence
nor a generalization to other cases has ever been established.
In this paper, we show that in fact there exists an underlying
principle, which we term posterior matching, that connects
these two schemes. Applying this principle, we present a simple

1The rate and error exponent analysis in the original papers [3], [6], while
intuitively appealing, are widely considered to be nonrigorous.
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recursive feedback transmission scheme that can be tailored
to any memoryless channel and any desired input distribution
(e.g., capacity achieving under some input constraints), and
is optimal in the sense of achieving the corresponding mutual
information, under general conditions. Loosely speaking, the
new scheme operates as follows: At each time instance, the
transmitter computes the posterior distribution of the message
point given the receiver’s observations. According to the pos-
terior, it “shapes” the message point into a random variable
that is independent of the receiver’s observations and has the
desired input distribution, and transmits it over the channel.
Intuitively, this random variable captures the information still
missing at the receiver, described in a way that best matches
the channel input. In the special cases of a BSC with uniform
input distribution and an AWGN channel with a Gaussian input
distribution, the posterior matching scheme is reduced to those
of Horstein and Schalkwijk-Kailath respectively, thereby also
proving the Horstein conjecture as a corollary.

The paper is organized as follows. In Section II, notations
and necessary mathematical background are provided. In
Section III, the posterior matching principle is introduced and
the corresponding transmission scheme is derived. Technical
regularity conditions for channels and input distributions are
discussed in Section IV. The main result of this paper, the
achievability of the mutual information via posterior matching,
is presented in Section V. Error probability analysis is ad-
dressed in Section VI, where closed-form expressions are
provided for a range of rates (sometimes strictly) below the
mutual information. Some extensions including variants of the
baseline scheme, and the penalty in rate incurred by a channel
model mismatch, are addressed in Section VII. A discussion
and some future research items appear in Section VIII. Several
illustrative examples are discussed and revisited throughout the
paper, clarifying the ideas developed.

II. PRELIMINARIES

In this section, we provide some necessary mathematical
background. Notations and definitions are given in Section II-A.
Information theoretic notions pertaining to the setting of com-
munication with feedback are described in Section II-B. An
introduction to the main mathematical tools used in the paper,
continuous state-space Markov chains and iterated function
systems, is given in Sections II-C and II-D.

A. Notations and Definitions

Random variables (r.v.’s) are denoted by upper-case letters,
their realizations by corresponding lower-case letters. A real-
valued r.v. is associated with a probability distribution
defined on the usual Borel -algebra over , and we write

. The cumulative distribution function (c.d.f.) of
is given by , and the inverse c.d.f. is

defined to be . Unless other-
wise stated, we assume that any real-valued r.v. is either con-
tinuous, discrete, or a mixture of the two2. Accordingly, ad-

2This restricts � to be the sum of an absolutely continuous function (con-
tinuous part) and a jump function (discrete part). This is to say we avoid the case
of a singular part, where � assigns positive probability to some uncountable
set of zero Lebesgue measure.

mits a (wide sense) probability density function (p.d.f.) ,
which can be written as a mixture of a Lebesgue integrable
function (continuous part) and Dirac delta functions (discrete
part). If there is only a continuous part then and its distribu-
tion/c.d.f./p.d.f. are called proper. The support of is the inter-
section of all closed sets for which , and is de-
noted .3 For brevity, we write for , and

is called a mass point if . The discrete
part of the support is the set of all mass points, and the contin-
uous part the complement set. The interior of the support is de-
noted by for short. A vector of real-valued r.v.’s

is similarly associated with
and with , where the p.d.f. is now called proper if
all the scalar conditional distributions are a.s. (almost surely)
proper. We write for expectation and for the proba-
bility of a measurable event within the parentheses. The uniform
probability distribution over (0, 1) is denoted throughout by .
A measurable bijective function is called
a uniformity preserving function (u.p.f.) if implies that

.
A scalar distribution is said to be (strictly) dominated by

another distribution if whenever
, and the relation is denoted by . A distribution

is called absolutely continuous w.r.t. another distribution
, if implies for every ,

where is the corresponding -algebra. This relation is de-
noted . If both distributions are absolutely continuous
w.r.t. each other, then they are said to be equivalent. The total
variation distance between and is defined as

A statement is said to be satisfied for -a.a. (almost all) ,
if the set of ’s for which it is satisfied has probability one
under .

In what follows, we use for the convex hull operator,
for the length of an interval for

for the range of a function , and for function composition.
The indicator function over a set is denoted by . A set

is said to be convex in the direction , if the
intersection of with any line parallel to is a connected set
(possibly empty). Note that is convex if and only if it is convex
in any direction.

The following simple lemma states that (up to discreteness
issues) any real-valued r.v. can be shaped into a uniform r.v. or
vice versa, by applying the corresponding c.d.f or its inverse,
respectively. This fact is found very useful in the sequel.

Lemma 1: Let be statistically independent.
Then

(i) .
(ii) . Specifically, if is proper

then .
Proof: See Appendix A.

3This coincides with the usual definitions of support for continuous and dis-
crete r.v.’s.
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A proper real-valued r.v. is said to have a regular tail
if there exists some and positive constants

, such that

for any satisfying .
Lemma 2: Let X be proper with and a

bounded unimodal p.d.f. . Each of the following conditions
implies that has a regular tail:

(i) and as ,
for some .

(ii) and as
, for some .

Proof: See Appendix C.

Example 1: If is either Gaussian, Laplace, or Cauchy dis-
tributed then has a regular tail.

B. Information Theoretic Notions

The relative entropy between two distributions and
is denoted by . The mutual information between
two r.v.’s and is denoted , and the differential
entropy of a continuous r.v. is denoted . A memoryless
channel is defined via (and usually identified with) a conditional
probability distribution on . The input alphabet of
the channel is the set of all for which the distribution

is defined, the output alphabet of the channel is the

set . A sequence of real-
valued r.v. pairs taking values in is said to
be an input/output sequence for the memoryless channel
if

(1)

A probability distribution is said to be a (memoryless)
input distribution for the channel if . The
pair induces an output distribution over the
output alphabet, a joint input/output distribution , and an
inverse channel . Such a pair is called an
input/channel pair if .

A channel for which both the input and output alphabets
are finite sets is called a discrete memoryless channel (DMC).
Note that the numerical values of the inputs/outputs are practi-
cally irrelevant for a DMC, and hence in this case one can as-
sume without loss of generality that
and . Moreover, two input/DMC pairs

and are said to be equivalent if
one can be obtained from the other by input and output per-
mutations, i.e., there exist permutations and

such that

for all . In particular, equivalent pairs have the
same mutual information.

Let be a random message point uniformly distributed over
the unit interval, with its binary expansion representing an in-
finite independent-identically-distributed (i.i.d.)

sequence to be reliably conveyed by a transmitter to a receiver
over the channel . A transmission scheme is a sequence
of a-priori agreed upon measurable transmission functions

, so that the input to the channel generated
by the transmitter is given by

A transmission scheme induces a distribution
which together with (1) uniquely defines the joint distribution
of the input/output sequence. In the special case where does
not depend on , the transmission scheme is said to work
without feedback and is otherwise said to work with feedback.

A decoding rule is a sequence of measurable mappings
, where is the set of all open intervals in (0, 1).

We refer to as the decoded interval. The error prob-
ability at time associated with a transmission scheme and a
decoding rule, is defined as

and the corresponding rate at time is defined to be

We say that a transmission scheme together with a decoding rule
achieve a rate over a channel if

(2)

The rate is achieved within an input constraint , if in ad-
dition

– (3)

where is a measurable function and . A
scheme and a decoding rule are also said to pointwise achieve a
rate if for all

and to do the above within an input constraint if (3) is
also satisfied (given ). Clearly, pointwise achievability
implies achievability but not vice versa. Accordingly, a rate
is called (pointwise) achievable over a channel within an
input constraint if there exist a transmission scheme and a
decoding rule (pointwise) achieving it. The capacity (with feed-
back) of the channel under the input constraint
is the supremum of all the corresponding achievable rates4. It is
well known that the capacity is given by [11]

(4)

4A pointwise capacity can be defined as well, and may be smaller than (4)
depending on the channel. However, we do not pursue this direction.
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Furthermore, the capacity without feedback (i.e., considering
only schemes that work without feedback) is given by the above
as well. The unconstrained capacity (i.e., when no input con-
straint is imposed) is denoted for short.

An optimal fixed rate decoding rule with rate is one that
decodes an interval of length whose a-posteriori proba-
bility is maximal, i.e.,

where ties are broken arbitrarily. This decoding rule minimizes
the error probability for a fixed . An optimal vari-
able rate decoding rule with a target error probability

is one that decodes a minimal-length interval whose accu-
mulated a-posteriori probability exceeds , i.e.,

where ties are broken arbitrarily, thereby maximizing the in-
stantaneous rate for a given error probability. Both decoding
rules make use of the posterior distribution of the message point

, which can be calculated online at both terminals.
It should be noted that the main reason we adopt the above

nonstandard definitions for channel coding with feedback, is
that they result in a much cleaner analysis. It may not be imme-
diately clear how this corresponds to the standard coding frame-
work [12], and in particular, how achievability as defined above
translates into the actual reliable decoding of messages at a de-
sired rate. The following Lemma justifies this alternative for-
malization.

Lemma 3: Achievability as defined in (2) and (3) above, im-
plies achievability in the standard framework.

Proof: See Appendix A. Loosely speaking, a rate
is achievable in our framework if the posterior distribution

concentrates in an interval of size around ,
as grows large. This intuitively suggests that bits from
the message point representation could be reliably decoded,
or, more accurately, that the unit interval can be partitioned
into intervals such that the one containing can be
identified with high probability.

C. Markov Chains

A Markov chain over a measurable state space ,
is a stochastic process defined via an initial distribution on

, and a stochastic kernel (conditional probability distribution)
, such that

We say is the initial point of the chain if , and
denote the probability distribution induced over the chain for
an initial point by . The Markov chain generated by sam-
pling the original chain in steps of is called the -skeleton,
and its kernel is denoted by . The chain is said to be -ir-
reducible for a distribution over , if any set with

is reached in a finite number of steps with a positive

probability for any initial point, where is the corresponding
-algebra over . is said to be maximal for the chain if any

other irreducibility distribution is absolutely continuous w.r.t.
. A maximal -irreducible chain is said to be recurrent if

for any initial point, the expected number of visits to any set
with , is infinite. The chain is said to be

Harris recurrent, if any such set is visited infinitely often for
any initial point. Thus, Harris recurrence implies recurrence but
not vice versa. A set is called invariant if
for any . An invariant distribution is one for which

implies . Such an invariant distribution
is called ergodic if for every invariant set either
or . A chain which has (at least one) invariant dis-
tribution is called positive. For short, we use the acronym p.h.r.
to indicate positive Harris recurrence. A chain is said to have a

-cycle if its state space can be partitioned into disjoint sets
amongst which the chain moves cyclicly a.s. The largest -cycle
possible is called a period, and a chain is called aperiodic if its
period equals one.

The following results are taken from [13] and [14]. We will
assume here that is an open/closed subset of associated
with the usual Borel -algebra , although the claims hold
under more general conditions.

Lemma 4: An irreducible chain that has an invariant distri-
bution is (positive) recurrent, and the invariant distribution is
unique (and hence ergodic).

Lemma 5 (p.h.r. Conditions): Consider a chain with a kernel
. Each of the following conditions implies p.h.r.:
(i) The chain has a unique invariant distribution , and

for any .
(ii) Some -skeleton is p.h.r.

Lemma 6 (p.h.r. Convergence): Consider an aperiodic p.h.r.
chain with a kernel and an invariant distribution . Then for
any

Lemma 7 (Strong Law of Large Numbers (SLLN)): If is
an ergodic invariant distribution for the Markov chain
with kernel , then for any measurable function
satisfying and -a.a. initial point

–

Furthermore, if the chain is p.h.r. then the above holds for any
.

D. Iterated Function Systems

Let be a measurable space, a measur-
able function5, and write for any . Let

be an i.i.d. sequence of real-valued r.v.’s. An Iterated

5�� is equipped with the usual Borel �-algebra, and ��� is equipped with
the corresponding product �-algebra.



1190 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 3, MARCH 2011

Function system (IFS) is a stochastic process over
, defined by6

(5)

A Reversed IFS (RIFS) is a stochastic process over
, obtained by a reversed order composition

(6)

We say that the (R)IFS is generated by the (R)IFS kernel ,
controlled by the sequence , and is its initial point.
Note that an IFS is a Markov chain over the state space , and
in fact a large class of Markov chains can be represented by a
suitable IFS [15]. In contrast, a RIFS is not a Markov chain but it
is however useful in the analysis of the corresponding IFS,7 see,
e.g., [16]–[18]. However, in what follows, the RIFS will turn out
to have an independent significance.

A function is called a (generally nonlinear)
contraction if it is nonnegative, -convex, and for any

.

Lemma 8: For any contraction

where is the -fold iteration of . The sequence is
called the decay profile of .

Proof: See Appendix A.

Example 2: The function is a (linear) contraction
for , with an exponential decay profile .

Example 3: The function is a contraction
for and , with a polynomial decay profile

.
In what follows, a measurable and surjective function

is called a length function. We now state some useful
convergence Lemmas for (R)IFS.

Lemma 9: Consider the IFS defined in (5), and suppose there
exist a length function and a contraction with a decay
profile , such that

(7)

Then for any and any

Proof: See Appendix A.

In the sequel, we consider an IFS over the space of all
c.d.f. functions over the open unit interval8, i.e., all mono-
tone nondecreasing functions for which

6We call the process itself an IFS. In the literature sometimes � is the IFS
and the process is defined separately

7The idea is that it is relatively simple to prove (under suitable contraction
conditions) that the RIFS converges to a unique random fixed point a.s., and
since the IFS and the RIFS have the same marginal distribution, the distribution
of that fixed point must be the unique stationary distribution of the IFS.

8 is associated with the topology of pointwise convergence, and the corre-
sponding Borel �-algebra.

. Furthermore, we define the fol-
lowing family of length functions over :

(8)

where is surjective, -convex and symmetric
about .

For any and , define

(9)

and are called global and local Lipschitz oper-
ators,
respectively.

Lemma 10: Consider the RIFS in (6) over some interval
, and suppose the following condition holds for some :

(10)

Then for any

Proof: See Appendix A.

Lemma 11 (From [17]): Consider the RIFS in (6) over the
interval . Let be a continuous
function, and define

If

then for any and any

III. POSTERIOR MATCHING

In this section, we introduce the idea of posterior matching
and develop the corresponding framework. In Section III-A,
a new fundamental principle for optimal communication with
feedback is presented. This principle is applied in Section III-B,
to devise a general transmission scheme suitable for any given
input/channel pair ,9. This scheme will later be
shown (in Section V) to achieve any rate below the corre-
sponding mutual information , under general condi-
tions. A recursive representation of the scheme in a continuous
alphabet setting is developed, where the recursion rule is given
as a simple function of the input/channel pair . A

9For instance, � may be selected to be capacity achieving for � , pos-
sibly under some desirable input constraints.
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common framework for discrete, continuous and mixed alpha-
bets is introduced in Section III-C, and a corresponding unified
recursive representation is provided. Several illustrative exam-
ples are discussed throughout the section, where in each the
corresponding scheme is explicitly derived. In the special cases
of the AWGN channel with a Gaussian input, and the BSC with
a uniform input, it is demonstrated how the scheme reduces to
the Schalkwijk-Kailath and Horstein schemes, respectively.

A. The Basic Principle

Suppose the receiver has observed the output sequence ,
induced by a message point and an arbitrary transmission
scheme used so far. The receiver has possibly gained some in-
formation regarding the value of via , but what is the
information it is still missing? We argue that a natural candidate
is any r.v. with the following properties:

(I) is statistically independent of .
(II) The message point can be a.s. uniquely recovered

from .
Intuitively, the first requirement guarantees that represents
“new information” not yet observed by the receiver, while the
second requirement makes sure this information is “relevant”
in terms of describing the message point. Following this line of
thought, we suggest a simple principle for generating the next
channel input:

The transmission function should be selected so that
is -distributed, and is a fixed function10 of some r.v.

satisfying properties (I) and (II).
That way, the transmitter attempts to convey the missing in-

formation to the receiver, while at the same time satisfying the
input constraints encapsulated in 11. We call this the poste-
rior matching principle for reasons that will become clear im-
mediately. Note that any transmission scheme adhering to the
posterior matching principle, satisfies

(11)

The second equality follows from the memorylessness of the
channel and the fact that is a function of .
The last equality holds since , and since
is independent of , where the latter is implied by property
(I) together with the memorylessness of the channel. Loosely
speaking, a transmission scheme satisfying the posterior
matching principle therefore conveys, on each channel use,
“new information” pertaining to the message point that is
equal to the associated one-shot mutual information. This is
intuitively appealing, and gives some idea as to why such a
scheme may be good. However, this property does not prove
nor directly implies anything regarding achievability. It merely
indicates that we have done “information lossless” processing
when converting the one-shot channel into an -shot channel,

10By fixed we mean that the function cannot depend on the outputs � , so
that � is still independent of � .

11The extra degree of freedom in the form of a deterministic function is in
fact significant only when � has a discrete part, in which case a quantization
of � may void property (II).

an obvious necessary condition. In fact, note we did not use
property (II), which turns out to be important12.

The rest of this paper is dedicated to the translation of the pos-
terior matching principle into a viable transmission scheme, and
to its analysis. As we shall see shortly, there are infinitely many
transmission functions that satisfy the posterior matching prin-
ciple. There is, however, one baseline scheme which is simple
to express and analyze.

B. The Posterior Matching Scheme

Theorem 1 (Posterior Matching Scheme): The following
transmission scheme satisfies the posterior matching principle
for any

(12)

Based on the above transmission functions, the input to the
channel is a sequence of r.v.’s given by

(13)

Proof: Assume is proper for any .
Then Lemma 1 claim (ii) implies that ,
and since this holds for all then
and is statistically independent of . It is easy to see that
for any , the mapping is injective when its
domain is restricted to , thus can be
a.s. uniquely recovered from . Hence,
we conclude that satisfies properties (I) and
(II) required by the posterior matching principle. By Lemma 1
claim (i), applying the inverse c.d.f. merely shapes the uni-
form distribution into the distribution . Therefore, is

-distributed and since it is also a deterministic function of
, the posterior matching principle is satisfied.

See Appendix A to eliminate the properness assumption.

Following the above, it is now easy to derive a plethora of
schemes satisfying the posterior matching principle.

Corollary 1: Let be a sequences of u.p.f’s, and let
be a sequence of measurable bijective

functions. The transmission scheme given by

satisfies the posterior matching principle for any . In partic-
ular, a scheme obtained by fixing and to be the iden-
tity function13 for all , is called a -variant. The transmission
scheme corresponding to a -variant is thus given by

(14)

Finally, the baseline scheme (12) is recovered by setting to be
the identity function.

We note that the different schemes described above have a
similar flavor. Loosely speaking, the message point is described

12One can easily come up with useless schemes for which only property (I)
holds. A simple example is uncoded transmission: Transmit the binary repre-
sentation of � bit by bit over a BSC, independent of the feedback.

13In fact, letting � be any sequence of monotonically increasing functions
results in the same scheme. This fact is used in the error probability analysis on
Section VI, to obtain tighter bounds.
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each time at a resolution determined by the current uncertainty
at the receiver, by somehow stretching and redistributing the
posterior probability mass so that it matches the desired input
distribution (we will later see that the “stretching rate” corre-
sponds to the mutual information). This interpretation explains
the posterior matching moniker. From this point forward we
mostly limit our discussion to the baseline scheme described by
(12) or (13), which is henceforth called the posterior matching
scheme. The -variants (14) of the scheme will be discussed
in more detail on Section VII-A.

As it turns out, the posterior matching scheme may sometimes
admit a simple recursive form.

Theorem 2 (Recursive Representation I): If is proper,
then the posterior matching scheme (12) is also given by

(15)

Moreover, the corresponding sequence of input/output pairs
constitute a Markov chain over a state space

, with an invariant distribution , and
satisfy the recursion rule

(16)

Proof: The initialization results imme-
diately from (12), recalling that is uniform over the unit
interval. To prove the recursion relation, we notice that since

is proper then the transmission functions are
continuous when restricted to the support of the posterior, and
strictly increasing in for any fixed . Therefore, we have
the following set of equalities:

(17)

where in (a) we used the continuity and monotonicity of the
transmission functions, and in (b) we used the facts that the
channel is memoryless and that by construction is statis-
tically independent of , which also imply that is an
i.i.d. sequence. The recursive rule (15) now results immediately
by combining (12) and (17).

Now, using (13) we obtain

yielding relation (16). Since is generated from via a
memoryless channel, the Markovity of is estab-
lished. The distribution is invariant since by construction

implies , and then is gen-
erated via the memoryless channel . Taking the state space

to be is artificial here since
, and is done for reasons of mathematical con-

venience to avoid having trivial invariant distributions (this is
not true when is not proper). Note that the chain emu-
lates the “correct” input marginal and the “correct” joint (i.i.d.)
output distribution; this interpretation is further discussed in
Section VIII.

In the sequel, we refer to the function appearing
in the recursive representation as the posterior matching kernel.
Let us now turn to consider several examples, which are fre-
quently revisited throughout the paper.

Example 4 (AWGN Channel): Let be an AWGN
channel with noise variance , and let us set a Gaussian input
distribution , which is capacity achieving for
an input power constraint P. We now derive the posterior
matching scheme in this case, and show it reduces to the
Schalkwijk-Kailath scheme. Let . Standard manip-
ulations yield the following posterior distribution

(18)

The joint p.d.f. is Gaussian and hence proper, so the re-
cursive representation of Theorem 2 is valid. By definition, the
corresponding posterior matching kernel satisfies

(19)

However, from Gaussianity and (18) we know that

(20)

Combining (19) and (20), the posterior matching kernel for the
AWGN channel setting is given by

(21)

and hence the posterior matching scheme is given by

(22)

From the above, we see that at time , the transmitter sends
the error term pertaining to the MMSE estimate of from ,
scaled to match the permissible input power . In fact, it can be
verified either directly or using the equivalence stated in The-
orem 2 that is the scaled MMSE term of given the
entire output sequence . Therefore, the posterior matching
scheme in this case is an infinite-horizon, variable-rate variant
of the Schalkwijk-Kailath scheme. This variant is in fact even
somewhat simpler than the original scheme [8], since the initial
matching step of the random message point makes transmission
start at a steady-state. The fundamental difference between the
posterior matching principle and the Schalkwijk-Kailath “pa-
rameter estimation” approach in a non-Gaussian setting, is now
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evident. According to Schalkwijk-Kailath one should transmit a
scaled linear MMSE term given past observations, which is un-
correlated with these observations but not independent of them
as dictated by the posterior matching principle; the two notions
thus coincide only in the AWGN case. In fact, it can be shown
that following the Schalkwijk-Kailath approach when the addi-
tive noise is not Gaussian results in achieving only the corre-
sponding “Gaussian equivalent” capacity, see Example 12.

Example 5 (BSC): Let be a BSC with crossover prob-
ability , and set a capacity achieving input distribution

, i.e., . We now de-
rive the posterior matching scheme for this setting, and show it
reduces to the Horstein scheme [3]. The conditions of Theorem
2 are not satisfied since the input distribution is discrete, and we
therefore use the original nonrecursive representation (12) for
now. It is easy to see that the matching step acts as a quan-
tizer above/below , and so we get

which is precisely the Horstein scheme. The posterior matching
principle is evident in this case, since slicing the posterior dis-
tribution at its median results in an input
given any possible output , and is hence independent
of and -distributed. We return to the BSC ex-
ample later in this section, after we develop the necessary tools
to provide an alternative (and more useful) recursive represen-
tation for the Horstein scheme.

Example 6 (Uniform Input/Noise): Let be an additive
noise channel with noise uniformly distributed over the unit in-
terval, and set the input , i.e., uniform over the unit in-
terval as well. Let us derive the posterior matching scheme in
this case. It is easy to verify that the inverse channel’s p.d.f. is
given by

Since the conditions of Theorem 2 are satisfied, we can use the
recursive representation. We note that since the input distribu-
tion is , the matching step is trivial and the posterior matching
kernel is given by

(23)

and therefore the posterior matching scheme is given by

(24)

The above has in fact a very simple interpretation. The de-
sired input distribution is uniform, so we start by transmitting
the message point . Then, given , we determine the
range of inputs that could have generated this output value, and

find an affine transformation that stretches this range to fill the
entire unit interval. Applying this transformation to gener-
ates . We now determine the range of possible inputs given

, and apply the corresponding affine transformation to ,
and so on. This is intuitively appealing since what we do in
each iteration is just zoom-in on the remaining uncertainty re-
gion for . Since the posterior distribution is always uniform,
this zooming-in is linear.

The posterior distribution induced by this transmission
strategy is uniform in an ever shrinking sequence of intervals.
Therefore, a zero-error variable-rate decoding rule would be to
simply decode at time the (random) posterior support interval

. The size of that interval is

where . Denoting the channel
noise sequence by , the corresponding rate is

where we have used the SLLN for the i.i.d. sequences .
Therefore, in this simple case we were able to directly show that
the posterior matching scheme, in conjunction with a simple
variable rate decoding rule, achieves the mutual information
with zero-error probability. In the sequel, the achievability of
the mutual information and the tradeoff between rate, error
probability and transmission period obtained by the posterior
matching scheme are derived for a general setting. We then
revisit this example and provide the same results as above from
this more general viewpoint.

Example 7 (Exponential Input/Noise): Consider an additive
noise channel with noise, and set
the input as well. This selection is not
claimed to be capacity achieving under any reasonable input
constraints, yet it is instructive to study due to the simplicity of
the resulting scheme. We will return to the exponential noise
channel in Example 10 after developing the necessary tools,
and analyze it using the capacity achieving distribution under
an input mean constraint.

It is easy to verify that for the above simple selection, the
input given the output is uniformly distributed, i.e., the inverse
channel p.d.f./c.d.f. are given by

The input’s inverse c.d.f. is given by
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Fig. 1. Normalized channel � .

Therefore, the posterior matching kernel is given by

(25)

and the posterior matching scheme in this case is simply given
by

(26)

C. The Normalized Channel

The recursive representation provided in Theorem 2 is
inapplicable in many interesting cases, including DMCs in
particular. In order to treat discrete, continuous, and mixed
alphabet inputs/channels within a common framework, we
define for any input/channel pair a corresponding
normalized channel with (0, 1) as a common input/output
alphabet, and a uniform input distribution . The nor-
malized channel is obtained by viewing the matching operator

as part of the original channel, and applying the output
c.d.f. operator to the channel’s output, with the technical
exception that whenever has a jump discontinuity the
output is randomly selected uniformly over the jump span.14

This is depicted in Fig. 1, where stands for the afore-
mentioned possibly random mapping. This construction is most
simply formalized by

(27)

where , and is statistically independent of .

Lemma 12 (Normalized Channel Properties): Let
be the normalized input/channel pair corre-

sponding to the pair . The following properties are
satisfied:

(i) , i.e., preserves the uniform distribution over
the unit interval.

(ii) The mutual information is preserved, i.e.,

(iii) The joint distribution is proper.
(iv) The normalized kernel is continuous in for

-a.a. .
Proof:

(i) By Lemma 1 claim (i) we have , and so
in (27). The result now follows from Lemma 1

claim (ii).

14The output mapping is of a lesser importance, and is introduced mainly to
provide a common framework.

(ii) An easy exercise using the relations in Fig. 1, and noting
that are always uniquely recoverable from , re-
spectively.

(iii) See Appendix A.
(iv) Follows easily from (iii).

The posterior matching scheme over the normalized channel
with a uniform input, is given by

The properties of the normalized channel allows for a
unified recursive representation of the above scheme via
the inverse normalized channel corresponding to

, i.e., in terms of the normalized
posterior matching kernel .

Theorem 3 (Recursive Representation II): The posterior
matching scheme for the normalized channel is given by the
recursive relation:

(28)

The corresponding sequence of input/output pairs
constitutes a Markov chain over a state space

, with an invariant distribution , and
satisfy the recursion rule

(29)

Furthermore, (29) is equivalent to the posterior matching
scheme (13) in the sense that the distribution of the sequence

coincides with the distribution of
the sequence .

Proof: By Lemma 12, the joint distribution is proper,
hence Theorem 2 is applicable and the recursive representa-
tions and Markovity follow immediately. Once again, taking
the state space to be and not is arti-
ficial and is done for reasons of mathematical convenience, to
avoid having the trivial invariant distributions
and , where . The distri-
bution is invariant by construction, and the equivalence to
the original scheme is by definition.

In the sequel, an initial point for the aforementioned Markov
chain will be given by a fixed value of the message
point only15. Notice also that the Theorem above reveals an in-
teresting fact: Whenever is not injective, the sequence of
input/output pairs pertaining to the original posterior matching
scheme (13) is a hidden Markov process. In particular, this is
true for the BSC and the Horstein scheme.

Example 5 (BSC, Continued): The normalized channel’s
p.d.f. corresponding to a BSC with crossover proba-
bility and a input distribution is given by

when are either both smaller or
both larger than , and otherwise. Following

15This is an abuse of notations, since an initial point is properly given by a pair
�� � � �. However, it can be justified since � � � and � is generated via
a memoryless channel. Hence, any statement that holds for a.a/all initial points
�� � � � also holds in particular for a.a./all � .
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Fig. 2. BSC normalized posterior matching kernel.

Theorem 3 and simple manipulations, the corresponding nor-
malized posterior matching kernel is given by

(30)

and for a fixed is supported on two functions of , depending
on whether which corresponds to in the original
discrete setting, see Fig. 2. Therefore, the posterior matching
scheme (which is equivalent to the Horstein scheme in this case)
is given by the following recursive representation:

. The hidden Markov process describing the original Horstein
scheme is recovered from the above by setting

Example 8 (The Binary Erasure Channel (BEC)): The binary
erasure channel is defined over the input alphabet
and the output alphabet . Given any input, the
output is equal to that input with probability , and equal to 2
with probability . Using the capacity achieving distribution

, it is easy to see from the nonrecursive
representation (12) that the posterior matching scheme in this
case is exactly the simple repetition rule—transmit the first bit
of until it is correctly received, then continue to the next
bit and so on. This scheme clearly achieves the capacity

. The recursive representation w.r.t. the normalized channel is
very simple and intuitive here as well. The normalized posterior
matching kernel is supported on three functions—the identity
function corresponding to the erasure output 2, and the functions

that correspond to the outputs , respectively.

Example 9 (General DMC): The case where is a DMC
and is a corresponding discrete input distribution is a simple
extension of the BSC/BEC settings. The normalized posterior
matching kernel is supported over a finite number of con-
tinuous functions, which are all quasi-affine relative to a fixed
partition of the unit interval into subintervals corresponding to
the input distribution. Precisely, for any the normalized
posterior matching kernel evaluated at is given by

(31)

and by a linear interpolation in between these points. Hence, the
corresponding kernel slopes are given by .

Example 10 (Exponential Noise, Input Mean Con-
straint): Consider an additive noise channel with

noise, but now instead of arbitrarily as-
suming an exponential input distribution as in Example 7, let
us impose an input mean constraint , i.e.,

The capacity achieving distribution under this input constraint
was determined in [19] to be a mixture of a deterministic distri-
bution and an exponential distribution, with the following gen-
eralized p.d.f.:

Under this input distribution the output is
, and the capacity can be expressed in

closed form

in a remarkable resemblance to the AWGN channel with an
input power constraint. Interestingly, in this case the posterior
matching scheme can also be written in closed form, and as
stated later, also achieves the channel capacity under the input
mean constraint.

To derive the scheme, we must resort to the normalized repre-
sentation since the input distribution is not proper. The input’s
inverse c.d.f. and the output’s c.d.f. are given by

Using the normalized representation and practicing some al-
gebra, we find that the normalized posterior matching kernel is
given by

(32)
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Thus, the posterior matching scheme in this case is given by

(33)

where the original channel’s input/output pairs are given by

and constitute a hidden Markov process. Note that since we have
a.s., then a.s. and we need

not worry about the rest of the thresholds appearing in (32).

IV. REGULARITY CONDITIONS FOR INPUT/CHANNEL PAIRS

In Section V, we prove the optimality of the posterior
matching scheme. However, to that end we first need to in-
troduce several regularity conditions, and define some well
behaved families of input/channel pairs.

For any fixed , define and to be the unique
solutions of

respectively. For any , define the left- -measure
of to have a density given by

where the interval is defined to be

(34)

Note that the left- -measure is not a probability distribution
since in general . Similarly, define right-
-measure of to have a density
given by

where the interval is defined to be

Note that a.e. over .

Following these definitions, an input/channel pair
is said to be regular, if the corresponding normalized channel
satisfies

Loosely speaking, the regularity property guarantees that the
sensitivity of the channel law to input perturbations is
not too high, or is at least attenuated by a proper selection of the
input distribution . Regularity is satisfied in many interesting
cases, as demonstrated in the following Lemma.

Lemma 13: Each of the following conditions implies that the
input/channel pair is regular:

(i) is finite, is convex in the -direction,
and is bounded away from zero over .

(ii) is proper, is convex in the -direction,
is bounded, and has a uniformly bounded

max-to-min ratio, i.e.,

(iii) is proper, and is unimodal with a reg-
ular tail and a bounded variance, uniformly over

.
(iv) is a DMC with nonzero transition probabilities.

Proof: See Appendix C.

For an input/channnel pair , define the following
set of properties:
(A1) is regular.
(A2) The invariant distribution for the Markov chain

, is ergodic.
(A3) is fixed-point free, i.e., for any

(35)

(A4) achieves the unconstrained capacity over , i.e.,
.16

The following is easily observed.
Lemma 14: (A2) (A3).

Proof: See proof of Lemma 21.

Let be the family of all input/channel pairs satisfying
properties (A1) and (A2). Let be the family of all input/
channel pairs satisfying properties (A1), (A3) and (A4). In the
sequel, we show that for members in the corresponding
posterior matching scheme achieves the mutual information.
However, while Lemma 13 provides means to verify the reg-
ularity Property (A1), and Properties (A3) and (A4) are easy to
check, the ergodicity property (A2) may be difficult to verify in
general. Therefore, we introduce the following more tractable
property:
(A5) is bounded and continuous over , where
the latter is connected and convex in the -direction.

We now show that (A3) and (A5) together imply a stronger
version of (A2). In fact, to that end a weaker version of (A3)
is sufficient, which we state (for convenience) in terms of the
nonnormalized kernel:
(A3*) For any there exists , such
that .

16Since an input/channel pair has finite mutual information, (A4) implies that
��� � ��. The unconstrained capacity is finite for discrete input and/or
output channels, but can be finite under other input alphabet constraints (e.g.,
an amplitude constraint).



SHAYEVITZ AND FEDER: OPTIMAL FEEDBACK COMMUNICATION VIA POSTERIOR MATCHING 1197

Lemma 15: (A3*) (A5) is p.h.r. and
aperiodic (A2).

Proof: For the first implication, see Appendix B. The
second implication is immediate since p.h.r. implies in partic-
ular a unique invariant distribution, which is hence ergodic.

Following that, let us define to be the family of all input/
channel pairs satisfying properties (A1), (A3*) and
(A5).

Corollary 2: .
Turning to the discrete case, let be an input/DMC
pair. Without loss of generality, we will assume throughout that

, as otherwise the unused input can be re-
moved. Define the following set of properties:
(B1)

(B2) At least one of the following holds:
(i) , s.t. or

.
(ii) , s.t.

.
(B3) s.t. , where17

Lemma 16: Let be an input/DMC pair. Then:
(i) (B1) (A1).

(ii) (B2) (A3).
(iii) (B1) (B3) (A3) (A2).
(iv) (B2).
(v) (B1) there exists an equivalent pair

satisfying (B1) (B2).
(vi) s.t. , and is

an input/DMC pair satisfying (B3).
Proof: Claim (i) follows immediately from condition (iv)

of Lemma 13. Claim (iv) holds since any two nonidentical bi-
nary distributions can be ordered by dominance. For the re-
maining claims, see Appendix A.

Remark 1: The equivalent pair in Lemma 16, claim (v), is
obtained via an input permutation only, which is given explicitly
in the proof and can be simply computed.

V. ACHIEVING THE MUTUAL INFORMATION

Our main theorem is presented in Section V-A, establishing
the achievability of the mutual information via posterior
matching for a large family of input/channel pairs. The exam-
ples of Section III are then revisited, and the applicability of
the theorem is verified in each. Section V-B is dedicated to the
proof of the Theorem.

A. Main Result

Theorem 4 (Achievability): Consider an input/channel pair
(resp. ). The corresponding

posterior matching scheme with a fixed/variable rate op-
timal decoding rule, achieves (resp. pointwise achieves) any
rate over the channel . Furthermore, if

17 is the set of rational numbers. Note that there always exists a pair for
which � �, but the quotient is not necessarily irrational.

(resp. ), then is achieved (resp.
pointwise achieved) within an input constraint , for
any measurable satisfying .

Example 4 (AWGN, Continued): is proper (jointly
Gaussian), and the inverse channel’s p.d.f. is
Gaussian with a variance independent of , hence by Lemma
2 condition (ii) has a regular tail uniformly in . Therefore,
by condition (iii) of Lemma 13, the Gaussian input/AWGN
channel pair is regular and Property (A1) is
satisfied. It is easy to see that the linear posterior matching
kernel (21) is fixed-point free, and so Property (A3*) is sat-
isfied as well. Finally, is continuous and bounded over
a support, so Property (A5) is also satisfied. Therefore

, and Theorem 4 verifies the well known
fact that the Schalkwijk-Kailath scheme (pointwise) achieves
any rate below the capacity .

Example 5 (BSC, Continued): The pair of a
input and a BSC with any nontrivial crossover prob-
ability , satisfies properties (A4) and (B1). Properties
(A1) and (A3) follow from claims (i), (ii) and (iv) of Lemma 16.
Hence and Theorem 4 implies that the pos-
terior matching scheme, which coincides in this case with the
Horstein scheme, indeed achieves the capacity

. This settles in the affirmative a longstanding conjecture.
Remark 2: In the BSC Example above, it also holds [via

Lemma 16, claim (iii)] that for a.a.
crossover probabilities , except perhaps for the countable set

where property (B3) is not satisfied.
In these cases the ergodicity property (A2) is not guaranteed,
though this may be an artifact of the proof (see Remark 7).
Therefore, although capacity is achieved for any (via ),
Theorem 4 guarantees the empirical distribution of the input
sequence to approach only for . However,
since is the unique capacity achieving distribution, this
sample-path property of the input sequence holds for
nonetheless (see Remark 6).

Remark 3: Interestingly, for the Horstein medians ex-
hibit “regular behavior”, meaning that any median point can al-
ways be returned to in a fixed number of steps. In fact, for the
subset of where for some positive integer

, the Horstein scheme can be interpreted as a simple fi-
nite-state constrained encoder that precludes subsequences of
more than consecutive 0’s or 1’s, together with an insertion
mechanism repeating any erroneously received bit times.
This fact was identified and utilized in [4] to prove achievability
in this special case.

Example 6 (Uniform Input/Noise, Continued): is proper
with a bounded p.d.f. over the convex support

, the marginal p.d.f. is bounded, and the inverse
channel’s p.d.f. is uniform hence has a bounded max-to-min
ratio. Therefore, condition (ii) of Lemma 13 holds, and prop-
erties (A1) and (A5) are satisfied. It is readily verified that the
kernel (23) is fixed-point free, and so property (A3*) is satisfied
as well. Therefore , and Theorem 4 rever-
ifies that the simple posterior matching scheme (24) pointwise
achieves the mutual information , as previ-
ously established by direct calculation. In fact, we have already
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seen that (variable-rate) zero-error decoding is possible in this
case, and in the next section we arrive at the same conclusion
from a different angle.

Example 7 (Exponential Input/Noise, Continued):
is proper with a bounded p.d.f. over the convex support

, the marginal p.d.f. is bounded,
and the inverse channel’s p.d.f. is uniform hence has a bounded
max-to-min ratio. Therefore, condition (ii) of Lemma 13 holds,
and properties (A1) and (A5) are satisfied. It is readily verified
that the kernel (25) is fixed-point free, and so property (A3*) is
satisfied as well. Therefore , and so by The-
orem 4 the posterior matching scheme (26) pointwise achieves
the mutual information, which is this case is .

Example 9 (General DMC, Continued): It has already been
demonstrated that the posterior matching scheme achieves the
capacity of the BSC. We now show that the same holds true
for a general DMC, up to some minor resolvable technicalities.
Let be a DMC with nonzero transition probabilities,
and set to be capacity achieving (unconstrained). Hence,
properties (B1) and (A4) are satisfied, and by Lemma 16, claim
(i), property (A1) holds as well. The corresponding posterior
matching scheme in this case is equivalent to a generalized
Horstein scheme, which was conjectured to achieve the uncon-
strained capacity when there are no fixed points, namely when
property (A3) is satisfied [6, Section 4.6]. Since in this case

, Theorem 4 verifies that this conjecture in-
deed holds. Moreover, the restriction of not having fixed points
is in fact superfluous, since by Lemma 16, claim (v), there al-
ways exists an equivalent input/DMC pair (obtained simply by
an input permutation) for which the posterior matching scheme
is capacity achieving. This scheme can be easily translated into
an equivalent optimal scheme for the original channel ,
which is in fact one of the many -variants satisfying the pos-
terior matching principle mentioned in Corollary 1, where the
u.p.f. plays the role of the input permutation. This observation
is further discussed and generalized in Section VII-A.

More generally, let be any input distribution for ,
e.g., capacity achieving under some input constraints. If the
associated kernel is fixed-point free ((A3) holds) and (B3) is
satisfied, then by Lemma 16, claim (iii), we have that (A2)
holds as well. This implies , and hence by
Theorem 4 the associated posterior matching scheme achieves
rates up to the corresponding mutual information ,
within any input constraints encapsulated in . Again, the
fixed-point requirement is superfluous, and achievability within
the same input constraints can be guaranteed via a posterior
matching scheme for an equivalent channel (or the corre-
sponding -variant), for which the kernel is fixed-point free.

It is worth noting that requiring property (B3) to hold is
practically nonrestrictive. For any fixed alphabet sizes ,
there is only a countable number of input/channel pairs that fail
to satisfy this property. Moreover, even if does
not satisfy (B3), then by Lemma 16, claim (iii), we can find
an input distribution arbitrarily close (in total variation)
to , such that (B3) does hold for . Hence, the
posterior matching scheme (or a suitable variant, if there are
fixed points) for achieves rates arbitrarily close to

while maintaining any input constraint encapsulated
in arbitrarily well.

Remark 4: For input/DMC pairs such that
but where (B3) does not hold, ergodicity is not guaranteed

(see also Remark 7). Therefore, although the (unconstrained)
capacity is achieved, the empirical distribution of the input se-
quence will not necessarily approach , unless is the
unique capacity achieving distribution for (see Remark
6).

Remark 5: The nonzero DMC transition probabilities restric-
tion (B1) is mainly intended to guarantee that the regularity
property (A1) is satisfied (although this property holds under
somewhat more general conditions, e.g., for the BEC.). How-
ever, regularity can be defined in a less restricting fashion so
that this restriction could be removed. Roughly speaking, this
can be done by redefining the left- -measure and right- -mea-
sure of Section IV so that the neighborhoods over which the in-
fimum is taken shrink near some finite collection of points in (0,
1), and not only near the endpoints, thereby allowing “holes” in
the conditional densities. For simplicity of exposition, this ex-
tension was left out.

Example 10 (Exponential Noise With an Input Mean Con-
straint, Continued): This example is not immediately covered
by the Lemmas developed. However, studying the input/channel
pair (namely, the normalized pair but without the
artificial output transformation), we see that satisfies
property (A5), and the corresponding posterior matching kernel
(which is easily derived from (32)) is fixed-point free, hence
property (A3*) is also satisfied. Proving that this is a regular pair
is straightforward but requires some work. Loosely speaking,
it stems from the fact that is monotonically de-
creasing in for any fixed , and has a one-sided regular
tail. Therefore, the posterior matching scheme (33) point-
wise achieves any rate below the mean-constrained capacity

.

B. Proof of Theorem 4

Let us start by providing a rough outline of the proof. First,
we show that zero rate is achievable, i.e., any fixed interval
around the message point accumulates a posterior probability
mass that tends to one. This is done by noting that the time
evolution of the posterior c.d.f. can be represented by
an IFS over the space , generated by the inverse channel’s
c.d.f. via function composition, and controlled by the channel
outputs. Showing that the inverse channel’s c.d.f. is contrac-
tive on the average (Lemma 17), we conclude that the posterior
c.d.f. tends to a unit step function about (Lemma 18) which
verifies zero-rate achievability. For positive rates, we use the
SLLN for Markov chains to show that the posterior p.d.f. at the
message point is (Lemma 19). Loosely speaking, a
point that cannot be distinguished from must induce, from
the receiver’s perspective, about the same input sequence as
does the true message point. Since the normalized inputs are
just the posterior c.d.f. sequence evaluated at the message point,
this means that such points will also have about the same c.d.f.
sequence as does, hence also will have a posterior p.d.f.

. But that is only possible within an interval no larger
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than around , since the posterior p.d.f. inte-
grates to unity. Thus, points that cannot be distinguished from

must be close to it. This is more of a converse, but
essentially the same ideas can be applied (Lemma 20) to show
that for any , a neighborhood of the mes-
sage point accumulates (with high probability) a posterior prob-
ability mass exceeding some fixed at some point during
the first channel uses. This essentially reduces the problem to
the zero-rate setting, which was already solved.

We begin by establishing the required technical Lemmas.
Lemma 17: Let satisfy property (A3). Then

there exist a contraction and a length function as in
(8) over , such that for any

(36)

Proof: See Appendix A.
Define the stochastic process ,

Since is the posterior
c.d.f. of the message point after observing the i.i.d. output se-
quence , and is a r.v. taking values in the c.d.f. space .
Moreover, by (28), we have that

(37)

and therefore is an IFS over , generated by the
normalized posterior matching kernel (via function
composition) and controlled by the outputs . Since
the message point is uniform, the IFS initializes at

(the uniform c.d.f.). Recall that the nor-
malized kernel is continuous in for -a.a. (Lemma 12,
claim (iv)), hence is a.s. continuous.

We find it convenient to define the -positive trajectory
and -negative trajectory , as follows:

(38)

These trajectories are essentially the posterior c.d.f. evaluated
after steps at a perturbation from (up to edge issues),
or alternatively the induced normalized input sequence for such
a perturbation from the point of view of the receiver. The true
normalized input sequence, which corresponds to the c.d.f. eval-
uated at the message point itself, is .

The next Lemma shows that for a zero rate, the trajectories
diverge towards the boundaries of the unit interval with proba-
bility approaching one, hence our scheme has a vanishing error
probability in this special case.

Lemma 18: Let satisfy property (A3). Then for
any

where is the decay profile of the contraction from
Lemma 17.

Proof: Let and be the length function and contraction
from Lemma 17 corresponding to the pair , and let

be the decay profile of . By the contraction property (36)
and Lemma 9, we immediately have that for any

(39)

Define the (random) median point of

Since is a.s. continuous, is a.s. satisfied. Using
the symmetry of the function , we can write

(40)

and then:

where (a) holds since for any , in (b) we use
the monotonicity of , and (c) follows from (40). Using (39)
this leads to

(41)

and similarly

(42)

Now set any , and write

(43)
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where in (a) we use the fact that integrals differ only over the
interval between and and the integrands are bounded by
unity, in (b) we use the union bound, and then (39) by noting
that applying can only increase the integrands, in (c) we
use (39), and (d) holds by the continuity and monotonicity of

. These properties are applied again together with the union
bound in (e), and the inequality holds for any . Finally,
in (f) we use (41)–(42) the fact that is uniformly
distributed over the unit interval. Choosing , we get

for some . The same bound clearly holds separately for
each of the two integrals above. Define the set

Then

and we get . Let us now set
, and suppose is large enough so that . Re-

calling the definition of the negative trajectory , we have

The result for is proved via the exact same
arguments.

Lemma 19: Let satisfy property (A2). Then the
posterior p.d.f. evaluated at the message point satisfies

(44)

Proof: Since the p.d.f.’s involved are all proper, we can use
Bayes law to obtain the following recursion rule:

(45)

where in the second equality we have used the memoryless
channel property and the fact that the output sequence is
an i.i.d. sequence with marginal . Applying the recursion rule

times, taking a logarithm and evaluating at the message point,
we obtain

Now by property (A2) the invariant distribution is ergodic,
and so we can use the SLLN for Markov chains (Lemma 7)
which asserts in this case that for -a.a.

Since , (44) is established.

For short, let us now define the -positive trajectory
and the -negative trajectory as the cor-

responding trajectories in (38) with . Accordingly,
we also write in lieu of , respectively. The
following Lemma uses the SLLN to demonstrate how, for rates
lower than the mutual information, these two trajectories even-
tually move away from some small and essentially fixed neigh-
borhood of the input, with probability approaching one. This is
achieved by essentially proving a more subtle version of Lemma
19, showing that it roughly holds at the vicinity of the message
point.

Lemma 20: Let satisfy properties (A1) and (A2).
Then for any rate there exists small enough
such that

(46)

Proof: We prove the first assertion of (46), the second as-
sertion follows through essentially the same way. Let be
such that . Let be the left- -mea-
sure corresponding to , as defined in Section IV. De-
fine

(47)
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We have that

and since by property (A1) the input/channel is regular then
, hence for any small

enough

We have therefore established that the function
is finitely integrable for any

small enough, and converges to a.e in a
monotonically nondecreasing fashion, as . Applying
Levi’s monotone convergence Theorem [20], we can exchange
the order of the limit and the integration to obtain

Let us set hereinafter so that

Since is finite we can once again apply (using property (A2))
the SLLN for Markov chains (Lemma 7) to obtain

(48)

The above intuitive relation roughly means that if the receiver,
when considering the likelihood of a wrong message point, ob-
tains an induced input sequence which is always -close to the
true input sequence, then the posterior p.d.f. at this wrong mes-
sage point will be close to that of the true message point given
in Lemma 19.

Define the following two sequences of events:

(49)

where the neighborhood is defined in (34). Let us now show
that . This fact will then be shown to imply

, which is precisely the first assertion in (46).

Define the following sequence of events:

Using (48) and the fact that the message point is uniform over
the unit interval, it is immediately clear that . For

short, define the random interval , and
consider the following chain of inequalities:

In (a), we use Jensen’s inequality and the expansion of the
posterior p.d.f. given in (45), in (b) we use the definition and
monotonicity of , (c) holds due to , and (d) due to .
Therefore

(50)

where the last inequality holds since . Now,
since , then for any we have

for large enough. Using that and (50), we bound
simply as follows:

(51)

where the last two inequalities are true for large enough. Since
(51) holds for any , we conclude that , as
desired.

To finalize the proof, note that implies that for any

and the rightmost inequality implies
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The above constraints imply that for any

establishing the implication . Consequently,
, thus .

We are now finally in a position to prove Theorem 4 for the
family . Loosely speaking, we build on the simple fact that
since the chain is stationary by construction, one can imagine
transmission to have started at any time with a message point

replacing . With some abuse of notations, we define

Namely, the -negative trajectory when starting at time from
. Note that in particular, we have . Since

the chain is stationary, the distribution of is indepen-
dent of . The corresponding positive trajectory can
be defined in the same manner.

Now recall the event defined in (49), which by Lemma
20 satisfies for any small enough. Note
that the complementary event implies that at some time

, the -negative trajectory is below the
-neighborhood of , namely

for some . Using the monotonicity of the transmission func-
tions, this in turn implies that the -negative trajectory
at time lies below the corresponding -negative trajectory
starting from , namely . Thus, we
conclude that for any
fixed small enough, where the maximum is taken over

.
Fixing any , we now show that in

probability:

(52)

In (a) we used the union bound, in (b) the fact that the chain
is stationary, and Lemma 18 was invoked in (c), where we recall
that (A2) (A3) by Lemma 14. Therefore, if
then in probability is established. However,

we note that this mild constraint18 is in fact superfluous. This
stems from the fact that the union bound in (a) is very loose
since the trajectories are all controlled by the same output se-
quence, and from the uniformity in the initial point in Lemma
9. In Appendix A, Lemma 25, we show that in fact

Following the derivations in (52), this in turn implies that
in probability without the additional constraint

on the decay profile.
The same derivation applies to the positive trajectory, re-

sulting in in probability. Therefore, for any

and so the posterior probability mass within a symmetric
neighborhood of (up to edge issues) after iterations,
approaches one in probability as . We can therefore find
a sequence such that the probability this mass exceeds

tends to zero. Using the optimal variable rate decoding
rule and setting the target error probability to , we
immediately have that . This holds
for any , and since can be arbitrarily small,
any rate below the mutual information is achievable.

To prove achievability using the optimal fixed-rate decoding
rule, note that any variable-rate rule achieving some rate
induces a fixed-rate rule achieving an arbitrarily close rate ,
by extending the variable-sized decoded interval into a larger
one of a fixed size whenever the former is smaller, and
declaring an error otherwise. Therefore, any rate
is achievable using the optimal fixed rate decoding rule. The fact
that the input constraint is satisfied follows immediately from
the SLLN since the marginal invariant distribution for the input
is . This concludes the achievability proof for the family .

Extending the proof to the family requires reproving
Lemma 19 and a variation of Lemma 20, where the ergod-
icity property (A2) is replaced with the maximality property
(A4). This is done via the ergodic decomposition [14] for
the associated stationary Markov chain. The proof appears
in Appendix A, Lemma 26. Achievability for the family
has already been established, since . The stronger
pointwise achievability statement for is obtained via p.h.r.
properties of the associated Markov chain, by essentially
showing that Lemmas 18, 19 and 20 hold given any fixed
message point. The proof appears in Appendix B, Lemma 27.

Remark 6: For , although the uncon-
strained capacity is achieved, there is no guarantee
on the sample path behavior of the input, which may generally
differ from the expected behavior dictated by , and depend
on the ergodic component the chain lies in. However, if is

18An exponentially decaying ���� can in fact be guaranteed by requiring
the normalized posterior matching kernel to be fixed-point free in a somewhat
stronger sense than that implied by property (A2), which also holds in particular
in all the examples considered in this paper.
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the unique input distribution19 such that ,
then the sample path behavior will nevertheless follow in-
dependent of the ergodic component. This is made precise in
Appendix A, Lemma 26.

VI. ERROR PROBABILITY ANALYSIS

In this section, we provide two sufficient conditions on the
target error probability facilitating the achievability of a given
rate using the corresponding optimal variable rate decoding rule.
The approach here is substantially different from that of the pre-
vious subsection, and the derivations are much simpler. How-
ever, the obtained result is applicable only to rates below some
thresholds . Unfortunately, it is currently unknown under
what conditions do these thresholds equal the mutual informa-
tion, rendering the previous section indispensable.

Loosely speaking, the basic idea is the following. After
having observed , say the receiver has some estimate
for the next input . Then correspond to a
unique estimate of the message point which is recovered
by reversing the transmission scheme, i.e., running a RIFS
over (0,1) generated by the kernel
(the functional inverse of the normalized posterior matching
kernel), controlled by the output sequence , and initialized at

. In practice however, the receiver decodes an interval and
therefore to attain a specific target error probability , one
can tentatively decode a subinterval of (0, 1) in which
lies with probability , which since , is any
interval of length . The endpoints of this interval are
then “rolled back” via the RIFS to recover the decoded interval
w.r.t. the message point . The target error probability decay
which facilitates the achievability of a given rate is determined
by the convergence rate of the RIFS, which also corresponds to
the maximal information rate supported by this analysis.

This general principle relating rate and error probability to the
convergence properties of the corresponding RIFS, facilitates
the use of any RIFS contraction condition for convergence. The
only limitation stems from the fact that generating the
RIFS is an inverse c.d.f. over the unit interval and hence never
globally contractive, so only contraction on the average condi-
tions can be used. The Theorems appearing below make use of
the principle above in conjunction with the contraction Lemmas
mentioned in Section II-D, to obtain two different expressions
tying error probabilities, rate and transmission period. The dis-
cussion above is made precise in the course of the proofs.

Denote the family of all continuous functions
by .

Theorem 5: Let be an input/channel pair,
the corresponding normalized pair, and let

. For any , define

19Uniqueness of the capacity achieving distribution for � does not gen-
erally imply the same for the corresponding normalized channel � . For
example, the normalized channel for a ����������		
� � pair, has an un-
countably infinite number of capacity achieving distributions.

where is defined in (9), and let

If , then the posterior matching scheme with an optimal
variable rate decoding rule achieves any rate , by set-
ting the target error probability to satisfy under the
constraint

(53)

for some , and some such that ,
where is defined in Lemma 11.

Proof: Let be the RIFS generated by
and the control sequence , initialized at

. Select a fixed interval as the
decoded interval w.r.t. . Since , we have that

Define the corresponding interval at the origin to be

and set it to be the decoded interval, i.e., . Note
that the endpoints of are r.v.’s. Since is invertible
for any , the interval corresponds to , namely

and then in particular (recall that )

For a variable rate decoding rule, the target error probability is
set in advance. Therefore, given the length of the interval

is constrained to be , and so without loss of
generality we can parameterize the endpoints of by

for some .
Now let , and define

Note that the expectation above is taken w.r.t. . Using
Lemma 11, if then

To find the probability that the decoded interval is larger than
, we substitute and obtain
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Following the above and defining , a suffi-
cient condition for for is given
by (53). The proof is concluded by taking the supremum over

, and noting that if no results in a contraction, then
.

Theorem 5 is very general in the sense of not imposing any
constrains on the input/channel pair. It is however rather difficult
to identify a weight function that will result in . Our
next error probability result is less general (e.g., does not apply
to discrete alphabets), yet is much easier to work with. Although
it also involves an optimization step over a set of functions, it is
usually easier to find a function which results in a positive rate
as the examples that follow demonstrate.

The basic idea is similar only now we essentially work with
the original chain and so the RIFS evolves over , gen-

erated by the kernel (the func-
tional inverse of the posterior matching kernel), and controlled
by the i.i.d. output sequence . To state the result, we
need some definitions first. Let be some input distribution
and let be differentiable and monoton-
ically increasing ( may be infinite). The family of all such
functions for which is bounded is denoted by .
Furthermore, for a proper r.v. with a support over a (possibly
infinite) interval, we define the tail function
to be

Namely, is the minimal probability that can be assigned
by outside an interval of length .

Theorem 6: Let be an input/channel
pair with continuous over , and let

. For any , define
as shown at the bottom of the page, and let

The following statements hold:
(i) The posterior matching scheme with an optimal variable

rate decoding rule achieves any rate , by setting
the target error probability to satisfy under the
constraint

(54)

for some satisfying .

(ii) If then any rate can be
achieved with zero error probability.20

(iii) If it is possible to write ,
then

whenever the right-hand-side exists.
Proof: We first prove the three statements in the special

case where has a support over a (possibly infinite) interval,
and considering only the identity function

over the support, i.e., discussing the achievability of
exclusively. We therefore implicitly assume here that

. Let be the RIFS generated by
and the control sequence , which

evolves over the space . Select a fixed interval
as the decoded interval w.r.t. . Since

, we have that

Define the corresponding interval at the origin to be

and following the same lines as in the proof of the pre-
ceding Theorem, is set to be the decoded interval w.r.t.

, and so the decoded interval for is set to be
. Thus

.
For any define

Using Jensen’s inequality, we have that for any

(55)

20This is not a standard zero-error achievability claim, since the rate is gen-
erally random. If a fixed rate must be guaranteed, then the error probability will
be equal to the probability of “outage”, i.e., the probability that the variable de-
coding rate falls below the rate threshold.
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Now suppose there exists some so that . Using
(55), we conclude that for any , and using
Lemma 10 we have that for any and any

and thus

where . A sufficient condition for
is given by

Since the above depends only on the length of , we can op-
timize over its position to obtain

, or arbitrarily close to that. Therefore, any rate
is achievable by setting under the con-

straint

We would now like to maximize the term over
the choice of . Using (55) we obtain

and so is nonincreasing with , thus

where is the identity function over . From the dis-
cussion above it is easily verified that iff
for some . Moreover, if then

for any , therefore in this case
for any large enough. Note that since is defined only over

, we have that . Thus,
statements (i) and (ii) are established for an input distribution
with support over an interval, and the specific choice of the iden-
tity function .

As for statement (iii), note first that since is continuous
then is jointly differentiable in . Suppose that

, and so are all differentiable. In this
separable case, we have

where we have used Jensen’s inequality in the last transition. We
now show that the limit of the left-hand-side above as
in fact attains the right-hand-side bound (assuming it exists),
which is similar to the derivation of the Shannon entropy as a
limit of Rényi entropies. Since is assumed to exist,
then we have as , and so to take
the limit we need to use L’Hospital’s rule. To that end, for any

and thus

Which established statement (iii) in the special case under dis-
cussion. The derivations above all hold under the assumption
that the right-hand-side above exists.

Treating the general case is now a simple extension. Consider
a general input distribution (with a p.d.f. continuous over
its support), and a differentiable and monotonically increasing
function . Let us define a -normalized
channel by connecting the operator to the
channel’s input. Let us Consider the posterior matching scheme
for the -normalized input/channel pair .
Using the monotonicity of , the corresponding input and
inverse channel c.d.f’s are given by

The posterior matching kernel is therefore given by

and the corresponding RIFS kernel is the functional inverse of
the above, i.e.,

Now, using the monotonicity of it is readily verified that
the input/channel pairs and
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correspond to the same normalized channel. Hence, the cor-
responding posterior matching schemes are equivalent, in the
sense that and have the
same joint distribution. Therefore, the preceding analysis holds
for the input/channel pair , and the result
follows immediately.

Loosely speaking, the optimization step in both Theorems has
a similar task—changing the scale by which distances are mea-
sured so that the RIFS kernel appears contractive. In Theorem
5, the weight functions multiply the local slope of the RIFS. In
Theorem 6 the approach is in a sense complementing, since the
functions are applied to the RIFS kernel itself, thereby shaping
the slopes directly. These functions will therefore be referred to
as shaping functions.

Example 4 (AWGN, Continued): Returning to the AWGN
channel setting with a Gaussian input, we can now determine
the tradeoff between rate, error probability and transmission pe-
riod obtained by the Schalkwijk-Kailath scheme. Inverting the
kernel (21) we obtain the RIFS kernel

Setting the identity shaping function , the condition
of Theorem 6 statement (iii) holds and so

so in this case , and statement (i) reconfirms that the
Schalkwijk-Kailath scheme achieves capacity. Using standard
bounds for the Gaussian distribution, the Gaussian tail function
(for the input distribution) satisfies

Plugging the above into (54), we find that a rate is
achievable by setting the target error probability to

recovering the well known double-exponential behavior. Note
that since the interval contraction factor in this case is indepen-
dent of the output sequence, the variable-rate decoding rule is in
fact fixed-rate, hence the same double-exponential performance
is obtained using a fixed-rate decoding rule.

We mention here the well known fact that for the AWGN
channel, the error probability can be made to decay as a higher
order exponential in the block length, via adaptations of the
Schalkwijk-Kailath scheme [21], [22]. These adaptations ex-
ploit the discreteness of the message set especially at the last
stages of transmission, and are not directly applicable within
our framework, since we define error probability in terms of in-
tervals and not discrete messages. They can only be applied to
the equivalent standard scheme obtained via Lemma 3.

Example 5 (BSC, Continued): The conditions of Theorem 6
are not satisfied in the BSC setting, and we resort to Theorem
5. Inverting the posterior matching kernel (30) pertaining to the
corresponding normalized channel, we obtain the RIFS kernel

Using a constant weight function (i.e., no weights) does not
work in this case, since the average of slopes for (say) ,
is

In fact, any bounded weight function will result in the same
problem for small enough, which suggests that the weight
function should diverge to infinity as . Setting
for is a good choice for since in that case

which can be made smaller than unity by properly choosing .
Setting symmetric around duplicates the above to

. However, this choice (and some variants) do not seem to
work in the range , for which is required.
Finding a weight function for which (if exists at all)
seems to be a difficult task, which we were unable to accomplish
thus far.

Example 6 (Uniform Input/Noise, Continued): We have al-
ready seen that achieving the mutual information with zero error
decoding is possible in the uniform noise/input setting. Let us
now derive this fact via Theorem 6. The output p.d.f. is given by

The RIFS kernel is obtained by inverting the posterior matching
kernel (23), which yields

Using the identity shaping function again (but now restricted
to ), the condition of statement (iii) holds and
therefore
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and we have , thereby verifying
once again that the mutual information is achievable. Since

is bounded, statement (ii) reconfirms that
variable-rate zero error decoding is possible.

Example 7 (Exponential Input/Noise, Continued): Let us re-
turn to the additive noise channel with an exponentially dis-
tributed noise and input. We have already seen that the pos-
terior matching scheme (26) achieves the mutual information,
which in this case is . The p.d.f. of the corre-
sponding output is

It is easily verified that , and so the RIFS
kernel is given by

Now, using Theorem 6 with the identity shaping function
restricted to , the condition of statement (iii)
holds and therefore

Thus, the identity function is not a good choice in this case,
and we must look for a different shaping function. Let us set

, which results in a p.d.f. and c.d.f.

Since is bounded and the above again satisfies the con-
dition of statement (iii), we obtain

where the infimum above is attained as . The tail function
of is bounded by

Thus, any rate is achieved by the posterior
matching scheme (26) using a variable decoding rule if the target
error probability is set to

and so the following error exponent is achievable:

Although we know from Theorem 4 that any rate up to the
mutual information is achieved in this case, is the best
shaping function we have found, and so our error analysis is
valid only up to the rate .

VII. EXTENSIONS

A. The -Variants of the Posterior Matching Scheme

In this subsection, we return to discuss the -variants (14) of
the baseline posterior matching scheme addressed thus far. To
understand why these variants are of interest, let us first establish
the necessity of a fixed-point free kernel (thereby also proving
Lemma 14).

Lemma 21: If (A3) does not hold, then (A2) does not hold ei-
ther and the corresponding scheme cannot achieve any positive
rate.

Proof: By the assumption in the Lemma, there must exists
some fixed-point such that

The posterior c.d.f. is obtained by an iterated
composition of the kernel controlled by the i.i.d.
output sequence . Thus, the fixed point at induces a fixed
point for the posterior c.d.f at as well, since

This immediately implies that no positive rate can be achieved,
since the posterior probability of the interval remains
fixed at . Stated differently, this simply means that the output
sequence provides no information regarding whether
or not. For practically the same reason, the invariant distribu-
tion for the Markov chain is not ergodic,
since the set is invariant yet

.

Suppose our kernel has fixed points, and so following the
above the unit interval can be partitioned into a total of cor-
responding invariant intervals. One exogenous way to try and
handle the fixed-point problem is to decode a disjoint union of

exponentially small intervals (one per invariant interval) in
which the message point lies with high probability, and then re-
solve the remaining ambiguity using some simple nonfeedback
zero-rate code. This seems reasonable, yet there are two caveats.
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First, the maximal achievable rate in an invariant interval may
generally be smaller than the mutual information, incurring a
penalty in rate. Second, the invariant distribution is not er-
godic, and it is likely that any encapsulated input constraints will
not be satisfied (i.e., not pathwise but only in expectation over
invariant intervals). A better idea is to map our message into
the invariant interval with the maximal achievable rate, which
is always at least as high as the mutual information. This cor-
responds to a posterior matching scheme with a different input
distribution (using only some of the inputs), and resolves the rate
problem, but not the input constraint problem. We must there-
fore look for a different type of solution.

Fortunately, it turns out that the fixed points phenomena is
in many cases just an artifact of the specific ordering imposed
on the inputs, induced by the selection of the posterior c.d.f.
in the posterior matching rule. In many cases, imposing a dif-
ferent ordering can eliminate this artifact altogether. We have
already encountered that in the DMC setting (Example 9 in
Section V, using Lemma 16), where in the case a fixed point
exists, a simple input permutation was shown to be sufficient in
order for the posterior matching scheme (matched to the equiv-
alent input/channel pair) to achieve capacity. This permutation
can be interpreted as inducing a different order over the inputs,
and the scheme for the equivalent pair can be interpreted as a
specific -variant of the original scheme.

These observations provide motivation to extend the notion of
equivalence between input/channel pairs from the discrete case
to the general case. Two input/channel pairs and

are said to be equivalent if there exist u.p.f’s
such that the corresponding normalized channels satisfy

for any . This practically means that the asterisked
normalized channel is obtained by applying and to the
input and output of the asterisk-free normalized channel, respec-
tively, and in this case we also say that the pair is

-related to the pair . Again, equivalent input/
channel pairs have the same mutual information. Following this,
for every u.p.f. and every set of input/channel pairs , we de-
fine to be the set of all input/channel pairs to which some
pair in is -related. The following result follows through im-
mediately from the developments in Sections III and V, and the
discussion above.

Theorem 7: For any input/channel pair and any
u.p.f. , the corresponding -variant posterior matching scheme
(14) has the following properties:

(i) It admits a recursive representation w.r.t. the normalized
channel, with a kernel , i.e.,

(ii) If (resp. ), the scheme
achieves (resp. pointwise achieves) any rate
over the channel . Furthermore, if

then this is achieved within an input con-
straint , for any measurable sat-
isfying .

Theorem 7 expands the set of input/channel pairs for which
some variant of the posterior matching scheme achieves the mu-
tual information, by allowing different orderings of the inputs
to eliminate the fixed point phenomena. For the DMC case, we
have already seen that considering -variants is sometimes cru-
cial for achieving capacity. Next we describe perhaps a more
lucid (although very synthetic) example, making the same point
for continuous alphabets.

Example 11: Let the memoryless channel be defined
by the following input to output relation:

where the noise is statistically independent of the input .
Suppose that some input constraints are imposed so that the ca-
pacity is finite, and also such that the capacity achieving dis-
tribution does not have a mass point at zero. Now assume that
an input zero mean constraint is additionally imposed. It is easy
to see that the capacity achieving distribution is now sym-
metric around zero, i.e., .
It is immediately clear that the output of the channel provides
no information regarding the sign of the input, hence the cor-
responding posterior matching kernel has a
fixed point at the origin, and equivalently, the normalized kernel

has a fixed point at . Thus, by Lemma 21 the
scheme cannot attain any positive rate. Intuitively, this stems
from the fact that information has been coded in the sign of the
input, or the most-significant-bit of the message point, which
cannot be recovered. To circumvent this problem we can change
the ordering of the input, which is effectively achieved by using
one of the -variants of the posterior matching scheme. For ex-
ample, set

and use the corresponding -variant scheme. This maintains the
same input distribution while breaking the symmetry around

, and eliminating the fixed point phenomena. This -variant
scheme can therefore achieve the mutual information, assuming
all the other conditions are satisfied.

B. Channel Model Mismatch

In this subsection, we discuss the model mismatch case,
where the scheme is designed according to the wrong channel
model. We assume that the transmitter and receiver are both
unaware of the situation, or at least do not take advantage of
it. To that end, for any pair , we define a
mismatch set consisting of all input/channel
pairs , with a corresponding normalized channel

, that admit the following properties:
(C1) satisfies (A5), and

(C2) .
(C3) .
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(C4) Let be the channel output sequence when
the posterior matching scheme for is used over

and initialized with . There is a contraction
and a length function over , such that for every

and

(C5) Let . For any
the set contains some open neighborhood of

.
The properties above are not too difficult to verify, with the

notable exception of the contraction condition (C4) which is not
“single letter”. This stems from the fact that the output distri-
bution under mismatch is generally not i.i.d. Clearly, for any

, we have
in particular. Moreover, if the posterior matching kernels for
the pairs and happen to coincide,
then we trivially have and
any rate is pointwise achievable,
hence there is no rate loss due to mismatch (although satisfac-
tion of input constraints may be affected, see below). Note that
the initialization step (i.e., transforming the message point into
the first channel input) is in general different even when the ker-
nels coincide. Nevertheless, identical kernels imply a common
input support and so using a different initialization amounts to
a one-to-one transformation of the message point, which poses
no problem due to pointwise achievability.

The channel model mismatch may incur a rate loss in general,
as quantified in the following Theorem.

Theorem 8 (Mismatch Achievability): Let
, and suppose the corresponding posterior matching scheme

(16) is used over a channel (unknown on both ter-
minals). If there exists an input distribution such that

, then is unique and
the mismatched scheme with a fixed/variable rate optimal
decoding rule matched to , pointwise achieves any
rate

(56)

within an input constraint , provided that
.

Proof: See Appendix B.

The difference between relative entropies in (56) constitutes the
penalty in rate due to the mismatch, relative to what could have
been achieved for the induced input distribution . Note that
this term is always nonnegative21, and vanishes when there is no
mismatch.

For the next example, we need the following Lemma. The
proof (by direct calculation) is left out.

21The non-negativity of the penalty term is not immediately clear from the ex-
pressions. However it holds since (by the converse to the channel coding The-
orem) no rate above ��� �� � is achievable with an input marginal � ,
which is the marginal induced by our scheme (see the proof of the theorem).

Lemma 22: Let be a pair of continuous, zero mean, finite
variance r.v.’s, and suppose is Gaussian. Then

Example 12 (Robustness of the Schalkwijk-Kailath Scheme):
Suppose that the Schalkwijk-Kailath scheme (22) designed
for an AWGN channel with noise and
input , is used over an AWGN channel with
noise variance . Since the scheme depends on the channel
and input only through the , then the scheme’s
kernel coincides with the Schalkwijk-Kailath kernel for an
input over the mismatch channel. Therefore,
following the remark preceding Theorem 8, there is no rate
loss, and the input power is automatically scaled to maintain the
same SNR for which the scheme was designed. This robustness
of the Schalkwijk-Kailath scheme to changes in the Gaussian
noise (SNR mismatch) was already mentioned [23].

However, Theorem 8 can be used to demonstrate how the
Schalkwijk-Kailath scheme is robust to more general perturba-
tions in the noise statistics. Suppose the scheme is used over
a generally non-Gaussian additive noise channel with
noise having zero mean and a variance . Suppose there
exists an input distribution such that

. We have and
for the original channel and the mismatch channel respectively.
Plugging (22) into the invariance property (C3) and looking at
the variance, we have

which immediately results in , so the SNR
is conserved despite the mismatch. Now applying Theorem 8
and some simple manipulations, we find that the mismatched
scheme pointwise achieves any rate satisfying

where we have used Lemma 22 in the first equality. Therefore,
the mismatched scheme can attain any rate below the Gaussian
capacity it was designed for, despite the fact that the noise is not
Gaussian, and the input power is automatically scaled to main-
tain the same SNR for which the scheme was designed. Invoking
[24], we can now claim that the Schalkwijk-Kailath scheme is
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universal for communication over a memoryless additive noise
channel (within the mismatch set) with a given variance and an
input power constraint, in the sense of loosing at most half a bit
in rate w.r.t. the channel capacity.

VIII. DISCUSSION

An explicit feedback transmission scheme tailored to any
memoryless channel and any input distribution was developed,
based on a novel principle of posterior matching. In partic-
ular, this scheme was shown to provide a unified view of the
well known Horstein and Schalkwijk-Kailath schemes. The
core of the transmission strategy lies in the constantly refined
representation of the message point’s position relative to the
uncertainty at the receiver. This is accomplished by evaluating
the receiver’s posterior c.d.f. at the message point, followed by
a technical step of matching this quantity to the channel via an
appropriate transformation. A recursive representation of the
scheme renders it very simple to implement, as the next channel
input is a fixed function of the previous input/output pair only.
This function is explicitly given in terms of the channel and
the selected input distribution. The posterior matching scheme
was shown to achieve the mutual information for pairs of
channels and input distributions under very general conditions.
This was obtained by proving a concentration result of the
posterior p.d.f. around the message point, in conjunction with a
contraction result for the posterior c.d.f. over a suitable function
space. In particular, achievability was established for discrete
memoryless channels, thereby also proving that the Horstein
scheme is capacity achieving.

The error probability performance of the scheme was ana-
lyzed, by casting the variable-rate decoding process as the evo-
lution of a reversed iterated function system (RIFS), and inter-
preting the associated contraction factors as information rates.
This approach yielded two closed form expressions for the ex-
ponential decay of the target error probability which facilitates
the achievability of a given rate, then used to provide explicit re-
sults in several examples. However, the presented error analysis
is preliminary and should be further pursued. First, the obtained
expressions require searching for good weight or shaping func-
tions, which in many cases may be a difficult task. In the same
vein, it is yet unclear under what conditions the error analysis
becomes valid for rates up to the mutual information. Finally,
the basic technique is quite general and allows for other RIFS
contraction lemmas to be plugged in, possibly to yield improved
error expressions.

We have seen that a fixed-point free kernel is a necessary
condition for achieving any positive rate. We have also demon-
strated how fixed points can sometimes be eliminated by con-
sidering an equivalent channel, or a corresponding -variant
scheme. But can this binary observation be refined? From the
error probability analysis of Section VI, it roughly seems that
the “closer” the kernel is to having a fixed point, the worst the
error performance should be. It would be interesting to quantify
this observation, and to characterize the best -variant scheme
for a given input/channel pair, in terms of minimizing the error
probability.

We have derived the rate penalty incurred in a channel model
mismatch setting, where a posterior matching scheme devised

according to one channel model (and input distribution) is used
over a different channel. However, the presence of feedback al-
lows for an adaptive transmission scheme to be used in order
to possibly reduce or even eliminate this penalty. When the
channel is known to belong to some parametric family, there
exist universal feedback transmission schemes that can achieve
the capacity of the realized channel if the family is not too rich
[25], and sometimes even attain the optimal error exponent [26].
However, these results involve random coding arguments, and
so the associated schemes are neither explicit nor simple. It
would therefore be interesting to examine whether an adaptive
posterior matching scheme, in which the transmitter modifies
its strategy online based on channel estimation, can be proven
universal for some families of memoryless channels. It seems
plausible that if the family is not too rich (e.g., in the sense of
[27]) then the posterior will have a significant peak only when
“close enough” to the true channel, and be flat otherwise. An-
other related avenue of future research is the universal commu-
nication problem in an individual/adversarial setting with feed-
back. For discrete alphabets, it was already demonstrated that
the empirical capacity relative to a modulo-additive memoryless
model can be achieved using a randomized sequential transmis-
sion strategy that builds on the Horstein scheme [28]. It remains
to be explored whether this result can be extended to general al-
phabets by building on the posterior matching scheme, where
the empirical capacity is defined relative to some parametric
family of channels.

An extension of the suggested scheme to channels with
memory is certainly called for. However, the posterior matching
principle needs to be modified to take the channel’s memory
into account, since it is clear that a transmission independent of
previous observations is not always the best option in this case.
In hindsight, this part of the principle could have been phrased
differently: The transmission functions should be selected so
that the input sequence has the correct marginal distribution,
and the output sequence has the correct joint distribution. In
the memoryless case, this is just to say that , and

is i.i.d. with the marginal induced by ,
which coincides with the original principle. However, when
the channel has memory the revised principle seems to lead
to the correct generalization. For instance, consider a setting
where the channel is Markovian of some order , and the
“designed” input distribution is selected to be Markovian of
order as well22. According to the revised principle, the input
to the channel should be generated in such a way that any
consecutive input/output pairs have the correct (designed) dis-
tribution23, and the joint output distribution is the one induced
by the designed input distribution and the channel, so the re-
ceiver cannot “tell the difference”. To emulate such a behavior,
a order (or higher) kernel is required, since any lower
order will result in some deterministic dependence between any

consecutive pairs. This also implies that a dimensional
message point is generally required in order to provide the
necessary degrees of freedom in terms of randomness. It can

22By that, we mean that � �� � �� � and� �

� � �� � are Markov chains.
23We interpret “marginal” here as pertaining to the degrees of freedom sug-

gested by the designed input distribution.
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be verified that whenever such a procedure is feasible, then
under some mild regularity conditions the posterior p.d.f. at
the message point is , where
is the directed information pertaining to the designed input
distribution and the channel [31]. This is encouraging, since for
channels with feedback the directed information usually plays
the same role as mutual information does for channels without
feedback [31]–[35]. Note also that the randomness degrees
of freedom argument for a multidimensional message point,
provides a complementary viewpoint on the more analytic
argument as to why the additional dimensions are required
in order to attain the capacity of an auto-regressive Gaussian
channel via a generalized Schalkwijk-Kailath scheme [36]. It is
expected that a scheme satisfying the revised principle and its
analysis should follow through via a similar approach to that
appearing in this paper.

APPENDIX A
MAIN PROOFS

Proof of Lemma 1: For the first claim, let us find the c.d.f.
of

where (a) holds since a c.d.f. is nondecreasing and continuous
from the right, and so the result follows. For the second claim,
define and let be such
that there exists for which . Then

and on the other hand

hence . If such an does not exists then there must
exist a jump point such that

and so

For a proper , there are no mass points hence the simpler result
follows immediately.

Proof of Lemma 3: Assume we are given a transmission
scheme and a decoding rule which are known to achieve
a rate . For simplicity, we assume the decoding rule is fixed
rate, (i.e., for all ), since any variable rate
rule can be easily mapped into a fixed rate rule that achieves

the same rate. It is easy to see that in order to prove the above
translates into achievability of some rate in the standard
framework, it is enough to show we can find a sequence

of message point sets, such that
for any , and such that we have

uniform achievability over , i.e.,

We now show how can be constructed for any .
Let be the (average) error probability associated with our
scheme and the fixed rate decoding rule. Define

and write

and so we have that . It is now easy to
see that if we want to select such that , and
also , then a sufficient condition is that

for some positive .
This condition can be written as

At the same time, we also have by definition

and the proof is concluded.

Proof of Lemma 8: Since is -convex over , it has a
unique maximal value attained at some (not necessarily unique)
point . Moreover, convexity implies is continuous over (0,
1), and since it is nonnegative and upper bounded by ,
it is also continuous at and . Now, define the
sequence . Since the sequence
is monotonically decreasing, and since is nonnegative it is
also bounded from below. Therefore, converges to a limit

, and we can write

Since is continuous over the above implies that
, i.e., is a fixed point of . Thus, we either have

in which case , or in which case the only fixed
point for is zero and so again . We now note that

for any , and also that is
nondecreasing over and hence so is . We therefore
have
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Proof of Lemma 9: For any

Markov’s inequality was used in (a), the contraction relation (7)
in (b) and Jensen’s inequality in (c). Inequality (d) is a recursive
application of the preceding transitions, and the definition of the
decay profile was used in (e).

Proof of Lemma 10: For any

Where in (a) we use Markov’s inequality, in (b) we use the con-
traction (10), and (c) is a recursive application of the preceding
transitions.

Proof of Theorem 1 [completed]: We prove by induction
that for any is proper for -a.a.

, and the rest of the proof remains the same. First, this
property is satisfied for since is proper. Now assume
the property holds for any . By our previous
derivations, this implies that for any ,
and thus by the definition of an input/channel pair we have in
particular for any such . Now
suppose the property does not hold for . This implies
there exists a measurable set with
so that for any . Therefore, it
must be that . However standard manipula-
tions using the fact that the channel is memoryless result in

, in contradiction.

Proof of Lemma 12, Claim (iii): Since , it
is enough to show that is proper for -a.a.

. Define the discrete part of the output support
to be , which is a count-

able set. Define also the set which is
a countable union of disjoint intervals inside the unit interval,
corresponding to the “jump spans” introduced by over .
Furthermore, for any define to be the set
of mass points for . Since , then it

must be that for -a.a. .
Therefore, there exists a set of full measure

, so that for any . Therefore, for
any restricted to has a proper
p.d.f., which implies that restricted to has
a proper p.d.f. as well, since is obtained from by applying
a continuous and bounded function. restricted to
any one of the countable number of intervals composing
is uniform, hence admits a proper p.d.f. as well. We therefore
conclude that is proper for any . To conclude,
define the set , which by
Lemma 1 is of full measure , and from the discussion
above is proper for any .

Proof of Lemma 16, Claim (ii): Suppose there exists some
so that and . Define the

set . For any and
, the normalized posterior matching kernel evaluated at

satisfies

where the last inequality is due to the dominance assumption
above, and is strict for . Moreover, the
normalized posterior matching kernel evaluated in between this
finite set of points is simply a linear interpolation. Thus, for any

and any , we have , and so

which implies the fixed-point free property (A3). The case
where follows by symmetry. The case
where is trivial.

Proof of Lemma 16, Claim (iii): We find it simpler here
to consider the normalized input but the original output ,
namely to prove an equivalent claim stating that the invariant
distribution for the Markov chain , is ergodic. To
that end, we show that if is an invariant set, then

. Let us write as a disjoint union:

The posterior matching kernel deterministically maps a pair
to the input , and then the corresponding

output is determined via . Since by (B1) all transi-
tion probabilities are nonzero, then each possible output in
is seen with a nonzero probability given any input. Thus, de-
noting the stochastic kernel of the Markov chain by , we have
that has support on the discrete set
for any . Since is an invariant set, this implies that

where by we mean the image set of under
. This in turn implies that

(57)
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Now, defining

we have that , and hence is also an invariant set.
Going through the same derivations as for , the invariance of

implies that

(58)

and hence

To avoid contradiction, it must be that
for all , and together with (58) it immediately follows that
for all

(59)

Namely, for any output value, the set remains the same after
applying the posterior matching kernel, up to a -null set.

Let us now prove the implication

(60)

To that end, we show that implies
. The upper bound follows from

. For the lower bound, we note that
implies there exists at least one such that

. Recall that for a DMC, the normalized posterior
matching kernel for any fixed output is a quasi-affine function
with slopes given by . Since by (B1)
all the transition probabilities are nonzero, these slopes are all
positive, and denote their minimal value by . Therefore,
it must be that , which by
(57) implies .

After having established (60), we proceed to show that
which will verify Property (A2). It is easily

observed that if is an interval, (59) holds if and only if the
endpoints of the interval are both either fixed points of the
kernel or endpoints of (0, 1). For a finite disjoint union of
intervals, (59) holds if and only if all nonshared endpoints are
both either fixed points of the kernel or endpoints of (0, 1).
Hence for such , since we assumed the kernel does not have
any fixed points, (59) holds if and only if .

Let us now extend this argument to any . Under (B3),
there exist two output symbols such that

where

Define the set

Lemma 23: is dense in (0,1):
Proof: Without loss of generality, we assume

. We prove equivalently that the set is dense in .
Let . Define

It is easy to see that , if is taken to be large

enough. Let be the fractional part of . Write:

Since can be though of as an irrational rotation on
the unit circle, hence is dense in (0,1) [37]. In particular, this
implies that has a subsequence , hence .

For , let . For brevity, let

. Define be the set obtained starting from
and applying times, and then applying

times. is linear over with a
slope , hence assuming that , we have

(61)

On the other hand, (59) together with the aforementioned lin-
earity imply that and are equal up to
a -null set. Combining this with (61) and Lemma 23, we find
that for any

We note that is the indefinite Lebesgue integral
of . Invoking the Lebesgue differentiation The-
orem [20], the derivative must
be equal to for a.a. , which implies

. Hence, is either of full measure or
a null set.

Let us now show that this implies the same for .
Define the function

Let us establish some properties of .
a) is Lipschitz, monotonically increasing, and maps (0,1)

onto (0,1): Trivial.
b) monotonically as for any

: Observe that

Hence with equality if and only if is a fixed
point, which contradicts property (A3). Thus, it must hold
that for any , hence is in-
creasing with . and therefore a limit exists and
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is at most 1. is continuous, hence the limit cannot be
smaller than 1 as this will violate .

c) up to a -null set: it is easily observed that

The property follows by applying (59).
Combining (a) and (c) it follows that for any

up to a -null set. Further-
more, since is either of full measure or null, then
property (a) implies the same for , and so either

for all , or .
Using (b), we get:

Hence (A2) holds.

Remark 7: The proof only requires an irrational ratio to be
found for (or similarly, for ), hence a weaker
version of property (B3) suffices. It is unclear if even this weaker
property is required for ergodicity to hold. The proof fails when-
ever the leftmost interval cannot be densely covered
by a repeated application the posterior matching kernel (starting
from the right endpoint), without ever leaving the interval. This
argument leans only on the linearity of the kernel within that
interval, and does not use the entire nonlinear structure of the
kernel. It therefore seems plausible that condition (B3) could be
further weakened, or perhaps even completely removed.

Proof of Lemma 16, Claim (v): (B1) trivially holds for any
equivalent input/channel pair. Let us show there exists one sat-
isfying (B2). To that end, the following Lemma is found useful.

Lemma 24: Let be two distinct probability vectors.
Then there exists a permutation operator such
that .

Proof: Let be the element-wise difference of and
, i.e., . Define to be a permutation operator

such that is in descending order. Then since and
we have that any partial sum of is positive,

i.e., for any , which implies the
result.

Now, since there must exist some so
that . Viewing distributions as probability
vectors, then by Lemma 24 above there exists a permutation
operator such that . Thus, applying

to the input results in an equivalent input/channel pair for
which (B2) holds.

Proof of Lemma 16, Claim (vi): Let ) be the
space of probability distributions over the alphabet , equipped
with the total variation metric. For a fixed channel , the set

of input distributions not satisfying property (B3) is clearly of
countable cardinality. Since any open ball around any point in

is of uncountable cardinality, then must be dense
in ), and the claim follows.

Proof of Lemma 17: Let be any surjec-
tive, strictly -convex function symmetric about . This implies
in particular that is continuous, its restriction to is in-
jective, and . Let

be the inverse of restricted to the branch. Let
be the corresponding length function over , as defined in (8).
Define the function as follows:

We now establish the following two properties:
a) is continuous over Fix any , and let

be a sequence in such that . De-

fine , and .
By Lemma 12 claim (iv), is continuous in
for -a.a. . Since are contin-
uous, we have that is continuous in for -a.a.

, and therefore for -a.a.
. Furthermore, . Thus, invoking the

bounded convergence Theorem [20], we get

Reiterating for , we con-
clude that .

b) for The lower bound is trivial.
For the upper bound, we note again that

and since by the fixed-point free property (A3) we also
have for any , then

is not a.s. constant. Combining that with the
fact that is strictly -convex, a strict Jensen’s in-
equality holds

Similarly, using the symmetry of

Now, define to be the upper convex envelope of .
Let us show that is a contraction. is trivially -convex
and nonnegative, hence it remains to prove that for

. Define the function

Property (b) implies that . Combining properties (a)
and (b), we observe that is continuous and positive
over for any fixed , hence attains a positive in-
fimum over that interval. We conclude that is continuous
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and monotonically nondecreasing over , and positive over
. Fixing any , we use the definition of the upper

convex hull and the above properties of to write

(62)

where the supremums and the infimum are taken over all
such that , and such that

is the convex combination . Thus,
since , a necessary condition for is for the
infimum in (62) to be attained as and . By
continuity and positivity, the latter implies . However,
the convex combination for can be maintained as
and if and only if , in contradiction. Hence

.
To conclude the proof, we demonstrate that and sat-

isfy (36):

where (a) holds by the definition of and the symmetry of
, (b) holds since , and (c) holds by Jensen’s in-

equality.
Lemma 25: Let satisfy property (A3). Then for

any and

where is the decay profile of the contraction from
Lemma 17.

Proof: For any and any where ,
define

Then for any fixed and is an IFS over . Let
be the uniform c.d.f., and define the following r.v.’s:

where is the associated length function from Lemma 17.
Clearly, . Furthermore, for any

. To see that, we note that is a deterministic

function of , hence there exists a sequence

of functions such that for any
sequence , and

Therefore, for any we have

where we have used Lemmas 9 and 17 for the last inequality,
noting that the former lemma holds for any IFS initialization.
The proof now follows that of Lemma 18, with the proper minor
modifications.

Lemma 26: Let satisfy (A1) and (A4). Then (44)
holds, and for any rate

(63)

Furthermore, if is also the unique input distribution for
such that , then

(64)

for any measurable satisfying .
Proof: Without the ergodicity property (A2), we cannot

directly use the SLLN which was a key tool in deriving (44)
and (48). Instead, we use the ergodic decomposition for Markov
chains24 [14, Section 5.3] to write the invariant distribution
as a mixture of ergodic distributions. We then apply the SLLN to
each ergodic component, and use the maximality property (A4)
to control the behavior of the chain within each component. For
clarity of exposition, we avoid some of the more subtle measure
theoretic details for which the reader is referred to [14].

Let denote the Markov stochastic kernel associated with the
posterior matching scheme. The ergodic decomposition implies
that there exists a r.v. taking values in (0, 1), such that

for some measurable function , and
is ergodic for , for -a.a. . Let us first show that

and are statistically independent. For any , it is clear
that is an invariant distribution for , being a mixture
of ergodic distributions. Hence the set must be invariant
for the posterior matching kernel, i.e.,

(65)

24The chain has at least one invariant distribution, and evolves over a locally
compact state space ��� �� , hence admits an ergodic decomposition.
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up to a -null set, for -a.a. . Define . For
any :

where (a) follows from (65) and the fact that a.s. deter-
mines , (b) holds since is independent of , and (c) holds
since (i.e., uniform).

We can now apply the SLLN (Lemma 7) to each ergodic com-
ponent . For -a.a. and -a.a. message points

(66)

Now, for any

where the inequality holds by the definition of the unconstrained
capacity and since is a Markov chain, and the equality
holds since the normalized channel preserves the mutual infor-
mation (Lemma 12). Furthermore, using the independence of
and and the Markov relation above again, together with prop-
erty (A4), leads to

Combining the above we conclude25 that for -a.a.

(67)

Substituting the above into (66) yields

for -a.a. . This in turn implies (44).
Establishing (63) follows the same line of argument, proving

a weaker version of (48). By the ergodic decomposition, for
-a.a. and -a.a. message points

(68)

The function satisfies

25Note that (67) does not hold in general if property (A4) is not satisfied, as
there may be variations in the limiting values between ergodic components.

and since , then

for -a.a. . Now since under property
(A4), then

(69)

It is therefore clear that for small values must be close
to for a set of high probability. Precisely

Then

Rearranging, we get

(70)

Combining (68), (69) and (70), we conclude that for any
and any small enough

(71)

for -a.a. message points , where as . The
remainder of the proof follows that of Lemma 19, with some
minor adaptations.

Finally, suppose is the unique capacity achieving input
distribution for . For -a.a.

(72)

Thus, since is a Markov chain and from the unique-
ness of as capacity achieving, it must be that

for -a.a. . Applying the SLLN to each ergodic com-
ponent, we find that for -a.a. and -a.a. message
points

establishing (64).
Remark 8: It is instructive to point out that the proof of the

Lemma holds also when property (A3) is not satisfied, namely
when the posterior matching kernel has fixed points. In that
case, each ergodic component must lie strictly inside an in-
variant interval (i.e., an interval between adjacent fixed points),
which results in a decoding ambiguity as the receiver cannot
distinguish between the ergodic components. As discussed in
Section VII-A, this exact phenomena prevents any positive rate
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from being achieved, and generally requires using a posterior
matching variant. The fact that capacity is nonetheless achieved
under (A4) in the absence of fixed-points even when the chain is
not ergodic, suggests that in this case almost any ergodic com-
ponent, in addition to being capacity achieving in the sense of
(67), is also dense in (0, 1). The intuitive interpretation is that
in that case any interval intersects with almost all of the ergodic
components, hence the receiver, interested in decoding intervals,
is “indifferent” to the specific component the chain lies in.

APPENDIX B
POINTWISE ACHIEVABILITY PROOFS

Proof of Lemma 15: Property (A5) implies in partic-
ular that are continuous and bijective over

respectively, and that is jointly
continuous in over . The normalized posterior
matching kernel is therefore given by

and is jointly continuous in over (note that for
the family this does not hold in general). Thus, property
(A3 ) implies (by continuity) that for any there exists
some so that .26

We first show that the chain is -irreducible. Let here
denote the usual Borel -algebra corresponding to the open unit
interval. Since is a deterministic function of ,
and since is generated from via a memoryless channel,
it follows (by arguments similar to those given in the proof of
Lemma 16) that to establish irreducibility it suffices to consider
only the component of the chain, and (since has a
proper p.d.f.) to show that any set with is
reached in a finite time with a positive probability starting from
any fixed message point .

Define the set mapping

namely, the set of all points that are “reachable” from the set
in a single iteration. If is an interval (or a single point),

then is also an interval, since it is a continuous image
of the set , which by prop-
erty (A5) is a connected set27. For any it holds that

26Note that continuity also implies there is an interval for which this holds,
and since � � � , the stronger property (A3) holds.

27This is proved as follows: since � � � are continuous, the set
��������� inherits the properties of �������	�, namely it is connected
(and open, hence path-connected) and convex in the �-direction. Therefore,
any two points in �� � � � can be connected by a path in ���������. If this
path does not lie entirely in � , then consider a new path that starts from � in
a straight line connecting to the last point in the original path which has the
same � coordinate as �, then merges with the original path until reaching the
first point with the same � coordinate as �, and continuing in a straight line to
�. Since ��������� is convex in the �-direction this new path is completely
within � .

, and together with property (A3 ) it must
also be that

(73)

Thus, is an interior point of the interval . The argu-
ments above regarding can be applied to all points within the
set , and then recursively to obtain

(74)

where is the -fold iteration of . Therefore,
is a sequence of expanding inter-

vals containing as an interior point. Note also that
. Consider the set

Let us show that . First, it is easy to see that
is an open interval, since it is a union of nested intervals, and if
it had contained one of its endpoints then that endpoint would
have been contained in for some , which by the
expansion property above is an interior point of

, in contradiction. Now, suppose that for
. Using (73) and the continuity of once again,

we have

in contradiction. The same argument applies for , establishing
. As a result, for any set with we

have that as . Therefore,
there exists a finite for which , and
since when restricted to , it must be
that . Thus, the normalized chain is -ir-
reducible. It was already verified that is an invariant dis-
tribution, hence by Lemma 4 the chain is also recurrent, is
unique and ergodic, and so property (A2) holds.

Let denote the stochastic kernel of our Markov chain. To
establish p.h.r., we would like to use condition (i) of Lemma
5. However, is a deterministic function of ,
and thus (as the former is supported on
a -null set). Nevertheless, it is easy to see that due to
the expansion property, the 2-skeleton of the chain (which
is also recurrent with the same invariant distribution) admits
a proper p.d.f. over a subset of and therefore

for any . Thus, by
condition (i) of Lemma 5 the 2-skeleton is p.h.r., which in turn
implies the chain itself is p.h.r. via condition (ii) of Lemma 5.

To establish aperiodicity, we use the expansion property (74)
once again. Suppose the chain has period and let
be the corresponding partition of the state space .
From our previous discussion we already know that for any
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, the set is an interval
that expands into (0, 1) as . Since we have the Markov
relation , the set

expands into in the sense that it con-
tains any open subset of for any large enough.
Therefore, by definition of periodicity for any and

we have
, and since , then it must be that

for any .
However, this cannot be satisfied by disjoint sets.

Lemma 27: Suppose . Then Lemmas 19
and 20 hold for any fixed message point .
Furthermore, for any and :

Proof: The proofs of Lemmas 19 and 20 remain virtually
the same, only now using the SLLN for p.h.r. chains (Lemma
7) to obtain convergence for any fixed message point.

Since by Lemma 15 the normalized chain is p.h.r. and ape-
riodic, Lemma 6 guarantees that the marginal distribution con-
verges to the invariant distribution in total variation, for any
initial condition and hence any fixed message point. Loosely
speaking, we prove the result by reducing the fixed message
point setting for large enough , to the already analyzed case
of a uniform message point in Lemma 18.

First, let be a sequence of r.v.’s such that tends
to in total variation. Then the result of Lemma 17 can be
rewritten as

(75)

which holds since the expectation is taken over a bounded
function.

Now, consider the -fold chain for
some fixed . It is immediately seen that this chain is also p.h.r.,
and its invariant distribution is , the -fold cartesian product
of . Thus, by Lemma 6 the -fold chain approaches this
invariant distribution in total variation for any initial condition.
In particular, this implies that

where is the -fold cartesian product of . Namely, the dis-
tribution of consecutive outputs tends to i.i.d. uniform in total
variation. Using (75) and a trivial modification of Lemma 9 for
an asymptotically i.i.d. control sequence, we have that for any
fixed

(76)

where is the decay profile of . Let be the smallest
integer such that for any

holds, which must exist by (76). Then

Now, the proof of the Lemma follows through by working with
in lieu of , and in (43) using the fact that the distribution

of tends to in total variation.

Proof of Theorem 8: Let us first make the distinction be-
tween the Markov chain generated by the posterior matching
scheme for when operating over the channel ,
according to whose law the transmitter and receiver encode/de-
code, and the chain generated by the same scheme when oper-
ating over the channel , which describes what actually
takes place during transmission. We refer to the former as the
primary chain denoting its input/output sequence as usual by

, and to the latter as the mismatch chain, denoting its
input/outptut sequence by . The same monikers and
notations are used for the normalized counterparts.

Property (C5) guarantees that the expansion property holds
for the mismatch chain, and since by Property (C3) is
an invariant distribution, a similar derivation as in Lemma 15
implies that the mismatch chain is p.h.r., which in particular
also guarantees the uniqueness of . We would now like
to obtain an analogue of Lemma 19. Let us expand posterior
p.d.f. w.r.t. the primary chain, using the fact that it induces an
i.i.d. output distribution is (this does not necessarily hold for the
mismatch chain) and the channel is memoryless

Applying the recursion rule times, taking a logarithm and eval-
uating the above at the message point, we obtain

Now we can evaluate this posterior of the primary chain using
the inputs/outputs of the mismatch chain, and apply the p.h.r.
SLLN (Lemma 19) for the mismatch chain using its invariant
distribution
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where in (a) we used the definition of the channel input, and in
(b) the finiteness of the terms is guaranteed by Property (C2)
and the fact that is an input/channel pair. The
same analysis using normalized chains results in

where the last equality is due to the invertibility of the chain
normalization, which is guaranteed by property (A5). Now we
can define the analogue of in (47) as follows:

Therefore

The second term on the right-hand-side above is finite
due to Property (C2), and by Property (C1) we have that

. Thus, for any
small enough

We can now continue as in the proof of Lemma (20), to show
that (46) holds in this case for any rate .

The contraction Property (C4) implies the equivalent of
Lemma 18 for the mismatch chain, since although the output
sequence is not necessarily i.i.d. even when we start in the
invariant distribution, we have a contraction uniformly given
any conditioning. Tied together with the above and repeating
the last steps of Theorem 4, the achievability of (56) is estab-
lished.

APPENDIX C
MISCELLANEOUS PROOFS

Proof of Lemma 2: For simplicity we assume that is
symmetric around its maximum, the general unimodal case
follow through essentially the same way. Since the property of
having a regular tail is shift invariant, we can further assume
without loss of generality that attains its maximum at (and
is symmetric around) .

(i) By the assumption, there exist
and so that for any

Thus, for any

and similarly

Identical derivations hold for and , and
thus setting the tail regularity is estab-
lished.

(ii) By the assumption, there exist
and so that for any

Thus, for any

and on the other hand

where (a) is easily verified by differentiation. Thus, for
any

where the last inequality holds for with suitable
selection of . Identical derivations hold for
and , and thus setting the tail
regularity is established.

Proof of Lemma 13:
(i) Let . Since is

convex in the -direction and , we
have that over . Therefore:

where in the last inequality we used the finiteness of
the joint entropy and . The same holds for

, concluding the proof.
(ii) Since both are now bijective, we have that
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and thus

We can therefore write

where . Denote the max-to-min
ratio bound by

The relative entropy is now upper
bounded as follows:

(77)

where a straightforward change of variables was per-
formed, and is the counterpart of . In
the last inequality we used the fact that
is convex in the -direction, which implies that

. Furthermore,
is finite since is proper and bounded.

(iii) We prove the claim under the lenient assumption that
is also symmetric for any fixed . The argu-

ment for the general claim is a similar yet more tedious
version of this proof. We need the following Lemma:

Lemma 28: Suppose is proper with a symmetric unimodal
p.d.f., a finite variance , and a regular tail with parameters

. Define

and let

Then

Proof: Without loss of generality we can assume that
, since a larger value implies a regular tail for any smaller

value. Define to be

It is easy to see that and . Defining
we can lower bound using symmetry:

Using Chebyshev’s inequality and symmetry, we can upper
bound by

Combining the above and using the monotonicity of for ,
we have

which yields a lower bound for

and since is symmetric and unimodal and by the assumption
, it is readily verified that

(78)

Now, recall that has a regular tail, which is this symmetric
case means that (recall that )
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Let us upper bound the relative entropy between using
the above, together with (78), as

Returning to the pursued claim, let be the common tail
parameters of , let and let be
an upper bound on the variance of for all . It follows
from definition that for any

where is defined as in Lemma 28. We now follow the
derivations of the previous claim (ii) up to (77), and use the
above inequality and Lemma 28 to obtain:

The same proof holds for .
(iv) A direct consequence of (i).
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